Contents
Contents
Chapter 2. Using structured programming macros	12
Accessing the macros	13
The ASMMREL macro	14
The ASMMTROP macro	14
The IF macro set	16
IF macro option A	17
IF macro option B	18
IF macro option C	19
IF macro option D	20
IF macros with Boolean operators	21
The ELSEIF macro	25
The DO macro set	26
The DO indexing group	27
DO loop terminator generation	27
Simple DO	27
Infinite loop	28
Branching to the ENDDO	28
Leaving a nested DO	29
Explicit specification	30
Counting	30
Backward indexing	31
Forward indexing	32
DO initial-REPEAT	32
DO FROM-NEXT	33
END.LOOP predicate	34
Register initialization	34
The UNTIL and WHILE keywords	36
Looping with DOEXIT and EXITIF	37
The SEARCH macro set	39
The CASE macro set	40
Integer case set examples	45
Bit-field case set examples	49
The SELECT macro set	54
SELECT macro option A	54
SELECT macro option B	57
SELECT macro option C	57
Additional facilities	59
Compare-and-branch facility	59
Dependent logic facility	61
Facility statistics	63

Examples
Example 1: IF option A, mnemonic condition	19
Example 2: IF option A, numeric condition	19
Example 3: IF option B	21
Example 4: IF option C	22
Example 5: IF option D	22
Example 6: IF Boolean operators (OR, AND)	25
Example 7: IF Boolean operators (ANDIF)	25
Example 8: IF Boolean operators with parenthesized predicate groups	26
Example 9: ELSEIF	27
Example 10: DO ONCE	30
Example 11: DO INF	30
Example 12: Do with ITERATE	30
Example 13: DO with ASMLEAVE	31
Example 14: DO BXLE	32
Example 15: DO FROM	32
Example 16: DO FROM (BCTR)	33
Example 17: DO, backward indexing	33
Example 18: DO, backward indexing without TO	34
Example 19: DO, forward indexing	34
Example 20: DO initial-REPEAT	35
Example 21: DO FROM-NEXT	35
Example 22: Do, forward indexing with END.LOOP predicate	36
Example 23: DO WHILE	38
Example 24: DO UNTIL	38
Example 25: DO WHILE, UNTIL	39
Example 26: DO WHILE, UNTIL (Boolean)	39
Example 27: DO FROM with DOEXIT	39
Example 28: DO INF with DOEXIT	40
Example 29: SEARCH, 1 EXITIF	41
Example 30: SEARCH, 2 EXITIFs	42
Example 31: CASE, integer	47
Example 32: CASE, integer with POWER	48
Example 33: CASE, integer with relative addressing	48
Example 34: CASE, integer with relative addressing, VECTOR=ADDRESS and SYSSTATE ARCHLVL=2	49
Example 35: CASE, integer with relative addressing, VECTOR=ADDRESS and constants location counter name	49
Example 36: CASE, integer with VECTOR=DISP	50
Example 37: CASE, bit-field with 1-byte case field	51
Example 38: CASE, bit-field with 1-byte bit field, even-numbered case register	52
Example 39: CASE, bit-field with 3-byte case field	53
Example 40: SELECT option A	57
Example 41: SELECT option A, predicate split before condition	58
Example 42: SELECT option A, test-under-mask predicate	58
Example 43: SELECT option B	59
Example 44: SELECT option C	60
Example 45: Compare-and-branch facility, facility disabled	61
Example 46: Compare-and-branch facility, facility enabled	62
Example 47: Compare-and-branch facility, facility enabled with relative addressing	63
Example 48: Dependent logic facility, facility disabled	63
Example 49: Dependent logic facility, facility enabled	64

[bookmark: _Toc412717147]Chapter 2. Using structured programming macros
The complexity of control flow in a program strongly affects its readability, the early detection of coding errors, and the effort needed to modify it later. You can generally simplify control flow (though sometimes at the cost of less efficiency and more redundant code) by restricting the ways in which branches occur. One way to restrict branches is to use only those necessary to implement a few basic structures such as:
Executing one or two blocks of code according to a true-false condition
Executing a block of code repeatedly until some limit is reached
Executing a specific block of code, in a given set, where the block was previously computed
If statements exist for all these structures in a programming language, then they are used exclusively. If some are missing, then simple branches are used to simulate those structures but only in standard patterns. In the case of OS assembler language, only the basic branch and branch-and-link instructions are available but macros that simulate these three structures are available.
The first two structures are sufficient to implement any “proper” program (that is, with one entry point and one exit) if its blocks of code are suitably ordered. It is assumed that the structures may be nested to any depth. The technique of writing programs using only these structures for branching is known as “structured programming”.
The standard structured programming figures have been implemented for the assembler language programmer through the following five sets of related macros.
The IF macro set:
IF or UNLESS
ELSE (optional)
ELSEIF (optional)
ENDIF
The DO macro set:
DO
DOEXIT (optional)
ITERATE (optional)
ASMLEAVE (optional)
ENDDO
The CASE macro set:
CASENTRY
CASE (one must be present)
ENDCASE
The SEARCH macro set:
STRTSRCH
EXITIF
ORELSE
ENDLOOP
ENDSRCH
The SELECT macro set:
SELECT
WHEN
OTHRWISE (optional)
ENDSEL
In addition, the following macros are provided to allow some control over the code generated by the above macros.
ASMMREL
ASMMTROP
[bookmark: _Toc412717148]Accessing the macros
To use these macros:
Ensure the macro library provided as part of the Toolkit Feature is included; for z/OS, in the SYSLIB concatenation; for CMS, in the GLOBAL MACLIB command; or for z/VSE, in the LIBDEF SOURCE search chain.
For z/OS the default SMP/E target library is hlq.SASMMAC2.
For z/VSE, the default sublibrary is PRD2.PROD.
For CMS, the default location is userid P696234H disk 29E macro library ASMSMAC MACLIB.
Add the following statement to the program:
COPY ASMMSP
Add this statement prior to any line containing a macro. You can add this statement either directly by updating the actual file or by using the PROFILE facility of HLASM. This COPY statement must be inserted before any use is made of these macros.
All the ‘visible’ macro names are set up by SETC statements in member ASMMNAME, which is copied and used by ASMMSP. If there is a collision, or you like to use different names for any of the macros, change the statements in ASMMNAME.
The following restrictions apply when using these macros:
The macros generate labels of the following format:
@SPMn
where n is a sequence number starting at 1.
Do not use these names for any labels within the user’s program.
Many macros accept a numeric or mnemonic value representing a condition code mask, either as a positional operand or as the CC= keyword operand. The values supplied for numeric operands are not condition code settings (0, 1, 2, or 3) but are the condition code mask values used in conditional branch instructions (values 1 to 14).
The macros use a set of global macro variables for processing. All such global variables start with the characters @SPM_. Macro variable names beginning with these characters must not be used in any other macros.
The following words are reserved for use as logical connectors and must not be used for operands or instructions: AND, OR, NOT, XOR, LIKE, ANDIF, ORIF, ANDIFNOT, ORIFNOT.
It is strongly suggested that you do not use the mnemonic keywords in Table 3 on page 14 as labels or operands.
[bookmark: _Toc412717149]The ASMMREL macro
By default, the structured programming macros generate based branch on condition instructions. You can get the macros to generate branch relative on condition instructions using the ASMMREL macro.
The ASMMREL macro can be used as follows:
ASMMREL ON

This macro sets a global variable that causes all subsequent macro expansions to use branch relative instructions. The operand is optional and the default is ON. To revert to using base displacement branches then insert the following statement in the program:
ASMMREL OFF
An optional keyword parameter, CLOCTR, may be also specified. This parameter is applicable for programs using relative addressing that have been structured into separate location counters, one for program code and one for constants. (For non-reentrant programs, the constants location counter can also be used for work fields.) Relative addressing is used within the program code section while base-displacement addressing is used to address the constants. When a program is structured in this way, the name of the constants location counter can be specified on the ASMMREL macro and results in more efficient code for some CASE set macros (see The CASE macro set on page 36, for details).
Specifying ASMMREL ON causes the following:
Do loop terminator is generated according to:
ASMMREL OFF – one of: BC BXH BXLE BCT BCTR
ASMMREL ON - one of: BRC BRXH BRXLE BRCT BCTR
The CASENTRY macro generation alters the contents of R0.
In addition, specifying ASMMREL ON, CLOCTR=xxx where xxx is the name of the location counter used for constants, causes the following:
The CASENTRY macro, when
[bookmark: _Ref412654637][bookmark: _Toc412717150]The ASMMTROP macro
The structured programming macros includes two optional facilities, both disabled by default: the machine instruction op code translation facility for compare-and-branch logic and the machine instruction op code translation facility for dependent logic. These facilities, when enabled, replace certain machine instructions in the source program with other machine instructions that are functionally equivalent but may perform faster. These facilities are briefly described here. For more information, including examples, see Additional facilities on page 57.
The machine instruction op code translation facility for compare-and-branch logic (referred to hereafter as the compare-and-branch facility) replaces certain CR, CGR, CLR, CLGR, CHI, LTR and LTGR instructions, when specified in a predicate on a structured programming macro, together with the following branch on condition instruction that would normally be generated, with a single compare and branch instruction that performs the same logical function (except for setting the condition code).
The machine instruction op code translation facility for dependent logic (referred to hereafter as the dependent logic facility) replaces load and store instructions, and branch on condition instructions with a mask of 15, coded in eligible dependent logic blocks (blocks of program logic that are executed only if a predicate string on the preceding structured programming macro evaluates true, or only if it evaluates false) with load on condition, store on condition and branch on condition instructions, with the mask set to the appropriate value for the predicate string, and removes the preceding branch instruction that would normally be generated to branch around the dependent logic block for the opposite condition.
These facilities are enabled and disabled with the ASMMTROP macro, as follows:
 ASMMTROP ON,FAC=fac
where fac is CB, for compare-and-branch facility, or DL, for dependent logic facility: enables the named facility
 ASMMTROP ON
enables both facilities
 ASMMTROP OFF,FAC=fac
disables the named facility
 ASMMTROP OFF
disables both facilities
 ASMMTROP ON,NOTE,FAC=fac
 ASMMTROP ON,NOTE
enables the named facility, or both facilities, and issues a comment MNOTE message for every case where the requested op code translation could not be performed.
The keyword parameter MAXLS may be coded on the ASMMTROP macro, for example:
 ASMMTROP ON,FAC=DL,MAXLS=5
When used, it should specify a decimal number between 1 and 99. The default is 10. This value is the maximum number of load and store instructions permitted in one of the following for the block(s) to be considered eligible for replacement of load and store instructions by load-on-condition and store-on-condition instructions.
a block of logic following an IF macro for which there is no ELSE macro
both the block of logic following an IF macro for which there is a corresponding ELSE macro and the block of logic following the corresponding ELSE macro
a block of logic following a WHEN macro that is not followed by an OTHRWISE macro
both the block of logic following a WHEN macro that is followed by an OTHRWISE macro and the block of logic following that OTHRWISE macro.
The following option can be used near the end of the program to generate a report in the program listing (using comment-type MNOTE messages), showing the number of instructions that were affected by the facilities:
ASMMTROP STATS
A facility, once enabled, remains enabled until disabled by a subsequent ASMMTROP macro. Thus it is possible to turn the facilities on and off for different parts of the program, if needed. The compare-and-branch facility may also be controlled for individual structured programming macros by the CC keyword parameter.
Specifying CC=YES (meaning: generate only predicates that set the condition code) disables the compare-and-branch facility for that structured programming macro and required that all predicates specify instructions that set the condition code. If CC=YES is specified and one or more predicates specifies a compare and branch instruction (which does not set the condition code), a level-12 MNOTE is issued.
CC=YES is useful when a subsequent structured programming macro depends on the condition code set by this structured programming macro.
Specifying CC=NO (meaning: generate only predicates that do not set the condition code) enables the compare-and-branch facility for that structured programming macro and requires that all predicates specify instructions that either do not set the condition code or that can be replaced by compare and branch instructions (which also do not set the condition code). If CC=NO is specified and one or more predicates specifies a condition code-setting instruction that cannot be replaced by a compare and branch instruction, a level-12 MNOTE is issued.
CC=NO is useful when a subsequent structured programming macro depends on the condition code set by a previous structured programming macro and would not execute as desired if this structured programming macro changed the condition code to another value.
[bookmark: _Toc412717151]The IF macro set
The IF macro set implements the IF THEN ELSE program figure. The flowchart for this figure is:
 ┌──────┐
 │ │
 ┌───→───┤ F1 ├────→────┐
 │true │ │ │
 │ └──────┘ │
 ┌──┴──┐ ┌──┴──┐
 │ │ │ │
────→───┤IF(P)│ │ENDIF├─────→
 │ │ │ │
 └──┬──┘ └──┬──┘
 │ ┌──────┐ │
 │false │ │ │
 └───→───┤ F2 ├────→────┘
 │ │
 └──────┘
In this figure, the test of the predicate p is represented by the IF macro, which determines whether the process F1 or F2 is to be executed. The exit path from the macro is represented by the terminator ENDIF macro. The general IF macro set is written:
In the IF examples that follow, the parentheses surrounding the predicate are optional.
 IF p THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
If the ELSE is not used, the flowchart is reduced to one that does not contain function F2 and is written:
 IF p THEN
 Code for F1
 ENDIF
The format of predicate p may take one of the forms listed in Table 2 . In each form the logical connectors AND, OR, NOT, XOR, LIKE, ANDIF, and ORIF are optional. THEN is a comment and must be preceded by one or more spaces if used. Macro instructions that set the condition code may be used in predicates, as shown in the table, but only positional parameters can be specified.
Compare-instructions with from 2 to 5 operands are supported. Non-compare instructions and macro instructions with from 0 to 5 operands are supported.
[bookmark: _GoBack]All these forms of the predicate p may be used in the DOEXIT, EXITIF and WHEN macros.
[bookmark: _Ref410828672][bookmark: _Ref410828691]Table 2. Predicate values and connector/terminator values
	Predicate Values
	Connector/Terminator

	numeric condition mask (1 to 14)
condition mnemonic
non-compare instruction, parm1, parm2,…,parm5, condition
compare-instruction, parm1, condition, parm2, parm3,…,parm5
macro-instruction,parm1,parm2,…,parm5,condition
	AND OR NOT XOR LIKE ANDIF ORIF

	Note: Do not use the connectors AND, OR, NOT, XOR, LIKE, ANDIF, and ORIF as program labels.

[bookmark: _Toc412717152]IF macro option A

►► IF condition ►◄
or
►► IF (condition) ►◄

(The enclosing parentheses are optional.)
Option A tests the previously set condition code. It uses the Extended Branch Mnemonics for the branch instruction or the numeric condition masks to indicate the condition. Table 3 following the examples shows the mnemonics and their complements.
[bookmark: _Toc412717449]Example 1: IF option A, mnemonic condition
 IF H THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces this result:
 IF H THEN
+ BNH @SPM1 ¬-> F (0 0 0 0 0) 0 1
 MVI WS_A,C'A'
 ELSE
+ B @SPM2
+@SPM1 DS 0Y
 MVI WS_B,C'B'
 ENDIF
+@SPM2 DS 0Y
The same example, using a numeric condition code mask, is:
[bookmark: _Toc412717450]Example 2: IF option A, numeric condition
 IF (2) THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
This produces equivalent code:
 if 2 then
+ BC 13,@SPM1 ¬-> F (0 0 0 0 0) 0 1
 MVI WS_A,C'A'
 else
+ B @SPM2
+@SPM1 DS 0Y
 MVI WS_B,C'B'
 endif
+@SPM2 DS 0Y
(The only difference is that the first branch on condition instruction specifies the numeric mask value 2 instead of using the equivalent extended mnemonic BNH.)
[bookmark: _Ref410828750][bookmark: _Ref410828765]Table 3: Condition mnemonics and complements
	After:
	Condition Mnemonics
	Numeric mask values
	Meaning
	Complement mnemonics
	Complement numeric mask values

	compare instructions
	arithmetic instructions
	test under mask (TM, TMY) instructions
	test under mask (TMHH, TMHL, TMLH, TMLL) instructions
	mixed operations3
	
	
	
	
	

	×
	
	
	
	
	E
	8
	equal
	
	NE
	7

	×
	
	
	
	
	H
	2
	high
	
	NH
	13

	×
	
	
	
	
	L
	4
	low
	
	NL
	11

	
	×
	
	
	
	M
	4
	minus
	
	NM
	11

	
	
	×
	
	
	M
	4
	mixed
	
	NM
	11

	
	
	
	×
	
	M
	4
	mixed, left bit is zero
	
	NM
	11

	
	×
	
	
	
	O
	1
	overflow
	
	NO
	14

	
	
	×
	×
	
	O
	1
	ones
	
	NO
	14

	
	×
	
	×
	
	P
	2
	plus
	
	NP
	13

	
	
	
	
	
	P
	2
	mixed, left bit is one
	
	NP
	13

	
	×
	
	
	
	Z
	8
	zero
	
	NZ
	7

	
	
	×
	×
	
	Z
	8
	zeros
	
	NZ
	7

	×
	
	
	
	
	EQ
	8
	equal
	
	NE
	7

	×
	
	
	
	
	GE
	11
	greater than or equal
	(strictly, greater than, equal to or overflow)
	LT, L
	4

	×
	
	
	
	
	GT
	2
	greater than
	
	NH, LE
	13

	×
	
	
	
	
	LE
	13
	less than or equal
	(strictly, less than, equal to or overflow)
	GT, H
	2

	×
	
	
	
	
	LT
	4
	less than
	
	NL, GE
	11

	×
	
	
	
	
	HL
	6
	high or low
	(but not overflow/ones)
	NHL
	9

	
	
	
	
	×
	HO
	3
	high or overflow/ones
	
	NHO
	12

	
	
	
	
	×
	LO
	5
	low or overflow/ones
	
	NLO
	10

	
	
	
	
	×
	ZH
	10
	zero or high
	(but not overflow/ones)
	NZH
	5

	
	
	
	
	×
	ZL
	1
	zero or low
	(but not overflow/ones)
	NZL
	3

	
	
	
	
	×
	ZO
	9
	zero or overflow/ones
	
	NZO
	6

	Notes:
Do not use the mnemonics and complement symbols as program labels.
The mnemonics shown in the table can be in lowercase.
“Mixed operations” refers to the case when the condition code may be set by more than one predicate on the same structured programming macro. For example, the mnemonic HO could be used for testing the condition code resulting from two possible predicates, one containing a compare instruction and the other a test under mask.

[bookmark: _Toc412717153]IF macro option B

►► IF (instruction mnemonic,parm1,parm2,…,parm5,condition) ►◄

The instruction mnemonic is any other than a compare, that sets the condition code. (Use option A if the condition code has been set previously.)
The parameters parm1, parm2,…, parm5 are the 0 to 5 operands associated with the instruction. (The number of operands depends on the instruction. The present version of the structured programming macros supports instructions with from zero to five operands.)
Condition is the value that the condition code mask must assume for the THEN clause to be executed. The condition parameter is either one of the condition mnemonics given in Table 3 on page 14, or a numeric condition code mask.
This example of option B:
[bookmark: _Toc412717451]Example 3: IF option B
 IF (TM,BYTE,X'80’,Z) THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces:
 IF (TM,BYTE,X’80’,Z) THEN
 TM BYTE,X’80’
 BC 15-8,#@LB1
 Code for F1
 ELSE
 BC 15,#@LB3
#@LB1 DC 0H
 Code for F2
 ENDIF
#@LB3 DC 0H
Option B also provides for three-operand instructions such as those that are available on the System/370. For example:
 IF (ICM,R1,M3,B2(D2),4)
produces:
 ICM R1,M3,B2(D2)
 BC 15-4,L1
In all option B formats, the instruction is coded first, followed by the appropriate operands in the same order as used in open code, and followed by the condition operand.
[bookmark: _Toc412717154]IF macro option C

►► IF compare instruction,parm1,condition,parm2,parm3,…,parm5 ►◄
or
►► IF (compare instruction,parm1,condition,parm2,parm3,…,parm5) ►◄

Parm1 and parm2 are always present. The total number of parameters depends on the instruction. The parameters parm1, parm2,…, parm5 are the 2 to 5 operands associated with the instruction. (The present version of the structured programming macros supports compare instructions with from two to five operands.)

Any compare instruction is valid. However, with a compare instruction, the condition mnemonic appears between parm1 and parm2, instead of at the end of the predicate as in option B.
In all cases, parm1, parm2,…,parm5 must be appropriate for the instruction, as if you were writing the instruction in assembler language. Compare and branch instructions may be specified. In that case, the fourth operand (branch address) must be omitted. Note that compare and branch instructions do not set the condition code. Therefore, extreme caution must be exercised when combining compare and branch predicates with predicates that just test the condition code (IF option A, described above) to ensure that the logic works as intended.
The condition parameter is either a condition mnemonic from Table 3 on page 14, or a numeric condition code mask.
This example of option C:
[bookmark: _Toc412717452]Example 4: IF option C
 IF CLI,0(2),EQ,X’40’ THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces:
 IF CLI,0(3),EQ,X'40'
+ CLI 0(3),X'40' (0 0 0 0 0) 0 1
+ BNE @SPM1 ¬-> F (0 0 0 0 0) 0 1
 Code for F1
 ELSE
+ B @SPM2
+@SPM1 DS 0Y
 Code for F2
 ENDIF
+@SPM2 DS 0Y
In all option C formats, the instruction is coded first, followed by the appropriate operands in the same order as used in open code, but with the condition code mask operand in the next to last position.
[bookmark: _Toc412717155]IF macro option D

►► IF CC=condition_code ►◄

Where:
condition_code
		Numeric condition mask
Option D tests the previously set condition code. It uses the numeric condition code mask to indicate the condition.
The following example:
[bookmark: _Toc412717453]Example 5: IF option D
 IF CC=2 THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces:
 IF CC=2
+ BC 13,@SPM1 ¬-> F (0 0 0 0 0) 0 1
 Code for F1
 ELSE
+ B @SPM2
+@SPM1 DS 0Y
 Code for F2
 ENDIF
+@SPM2 DS 0Y
Note: This form of the IF macro cannot be used with Boolean operators.
[bookmark: _Toc412717156]IF macros with Boolean operators
In the IF options A-C, described above, the parameter(s) on the IF macro form a single predicate. Predicates of any of these forms can be combined into longer logical expressions, called predicate strings (abbreviation pred-str), using the Boolean operators AND, OR, NOT, XOR and LIKE (referred to as connectors). For further flexibility, they can also be grouped together with parentheses. Then, the connector before a parenthesized group of predicates is applied to all the predicates in the group, instead of just to the single predicate following the connector. In this way, predicate groups can be nested to any level, limited only by the assembler limit of 1,024 characters total in a given macro instruction sublist.
(Note: The connectors ANDIF and ORIF, which provided parenthetical nesting of predicates to two levels without the use of parentheses in previous versions of the structured programming macros and to which their complements ORIFNOT and ANDIFNOT are now added, are still supported for compatibility purposes. However all new code should use parentheses to indicate any desired grouping of predicates.)
The rules for combining predicates together into a predicate string are:
the connector NOT may appear immediately before the first predicate in the string, immediately before the first predicate in a parenthesized group or immediately after any of the other connectors. It may not stand alone between two predicates. NOT,NOT (two NOTs in succession, with no intervening parenthesis)) is invalid
connectors AND, OR, XOR and LIKE (possibly followed by NOT) may only appear between two predicates
in a predicate string containing parentheses, the first non-null term after any left parenthesis must be the beginning of a predicate or the connector NOT. It may not be one of the other connectors
scanning from the left, a left parenthesis increases the level number by one and a right parenthesis lowers it by one. The level number must not be made negative by the occurrence of a right parenthesis. The level number must be zero at the end of the predicate string (which means that there must be as many right parentheses as there are left parentheses)
null parameters (two commas in succession) are permitted at the beginning of the predicate string and between predicates (on either side of the connector) and are ignored. Also, connectors may be immediately preceded by one or more periods (.). These periods are ignored. (These conventions are intended to allow long predicate strings to be vertically aligned on multiple, continued source lines, with possible intervening “space lines” (containing just a comma in the continue column and a non-blank character in the continuation indicator column), for greater readability.)
The connectors have the following effects:
NOT immediately before a predicate (with no intervening parenthesis) inverts the condition for that predicate
NOT immediately before a parenthesized group of predicates inverts the conditions of all the predicates and all the connectors at the next lower level in the group. (The inverse of a given condition mnemonic is the same as the value in the column headed “Complement mnemonic” in Table 3 on page 17. The inverse of a given connector is shown the column headed “Complement” in Table 4, below.)
p1,AND,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if both p1 and p2 evaluate true. If p1 is false, p2 is not executed.
p1,AND,NOT,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if p1 is true and p2 is false. If p1 is false, p2 is not executed
p1,OR,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if either p1 or p2 evaluates true. If p1 is true, p2 is not executed.
p1,OR,NOT,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if p1 is true or p2 is false. If p1 is true, p2 is not executed
p1,XOR,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if either p1 is true and p2 is false or if p1 is false and p2 is true. Code for both p2 and NOT,p2 is generated. If p1 is true, the code for NOT,p2 is executed; otherwise the code for p2 is executed.
p1,LIKE,p2, where p1 and p2 are individual predicates or predicate strings, evaluates true if p1 and p2 are either both true or both false. Code for both p2 and NOT,p2 is generated. If p1 is true, the code for p2 is executed; otherwise the code for NOT,p2 is executed.
p1,XOR,NOT,p2 is equivalent to p1,LIKE,p2.
p1,LIKE,NOT,p2 is equivalent to p1,XOR,p2.
[bookmark: _Ref411347955][bookmark: _Ref411347973]Table 4: Connectors and complements
	Connector
	Complement

	AND
	OR,NOT

	OR
	AND,NOT

	XOR
	LIKE

	LIKE
	XOR

	AND,NOT
	OR

	OR,NOT
	AND

	ANDIF
	ORIFNOT

	ORIF
	ANDIFNOT

	ANDIFNOT
	ORIF

	ORIFNOT
	ANDIF

	Note: ANDIF and ORIF are provided for compatibility purposes only. ANDIFNOT and ORIFNOT are added to allow the connector NOT to be added to predicates in existing code containing ANDIF or ORIF without having to rewrite the entire predicate string. None of these connectors should be used for new development.

All predicate strings are scanned from left to right. When there is more than one predicate in the string, the code generated is such that as soon as the expression can be verified as either true or false the appropriate branch to process either the code for F1 or the code for F2 is taken without executing the remaining tests. Statements that are continued onto more than one line must have a non-space character in the continuation indicator column (normally column 72) of all statements except the last. Continued statements must have a non-space character in the continuation column (normally column 16).
This example:
[bookmark: _Toc412717454]Example 6: IF Boolean operators (OR, AND)
 IF (10),OR, X
 (AR,R2,R3,NZ),AND, X
 (ICM,R1,M3,B2(D2),4) THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces:
 IF (10),OR, X
 (AR,R2,R3,NZ),AND, X
 (ICM,R1,M3,B2(D2),4) THEN
+ BC 10,@SPM1 --> T (0 0 0 0 0) 0 1
+ AR R2,R3 (0 0 0 0 0) 0 2
+ BZ @SPM2 ¬-> F (0 0 0 0 0) 0 2
+ ICM R1,M3,B2(D2) (0 0 0 0 0) 0 3
+ BC 11,@SPM2 ¬-> F (0 0 0 0 0) 0 3
+@SPM1 DS 0Y
 * Code for F1
 ELSE
+ B @SPM3
+@SPM2 DS 0Y
 * Code for F2
 ENDIF
+@SPM3 DS 0Y
If the condition code mask setting is 10 upon entering the IF code, the program immediately branches to the F1 code. If it is not 10, and if the next condition code setting is such that the desired relation is not true, the branch is made around the third test to the F2 code. This is done since the AND condition cannot be met if the second relation is false.
The structured programming macros now recognize parenthesized groups of predicates and generate code to correspond to the grouping indicated by the parentheses. Therefore, the level-changing Boolean connectors ANFID and ORIF, which provided a simulation of parenthesized grouping of up to two levels, are no longer required. However, these connectors are still supported to provide compatibility with previous versions. In addition, level-changing connectors ANDIFNOT and ORIFNOT have been added to simplify changing existing code. However, all new development can use parenthesized predicate groups exclusively and dispense with the level-changing connectors.
The following example shows how ANDIF and ORIF were used to give a parenthetical grouping capability to the logical expressions. The use of either of these two as connectors of logical groupings indicates a closing parenthesis on the preceding group and an opening parenthesis on the following. Therefore, if the previous example is modified by replacing the AND by an ANDIF, this means that either the first or second condition must be true as well as the third one in order to execute F1.
[bookmark: _Toc412717455]Example 7: IF Boolean operators (ANDIF)
 IF (10),OR, X
 (AR,R2,R3,NZ),ANDIF, X
 (ICM,R1,M3,B2(D2),4) THEN
 Code for F1
 ELSE
 Code for F2
 ENDIF
produces:
 IF (10),OR, X
 (AR,R2,R3,NZ),ANDIF, X
 (ICM,R1,M3,B2(D2),4) THEN
+ BC 10,@SPM1 --> 3 (0 0 0 0 0) 0 1
+ AR R2,R3 (0 0 0 0 0) 0 2
+ BZ @SPM2 ¬-> F (0 0 0 0 0) 0 2
+@SPM1 ICM R1,M3,B2(D2) (0 0 0 0 0) 0 3
+ BC 11,@SPM2 ¬-> F (0 0 0 0 0) 0 3
 * Code for F1
 ELSE
+ B @SPM3
+@SPM2 DS 0Y
 * Code for F2
 ENDIF
+@SPM3 DS 0Y
For a better illustration of the effect of the ANDIF and ORIF usage, the examples which follow use capital letters to indicate the conditions that are tested.
If you write
A OR B AND C
the implied grouping is A OR (B AND C).
If you write
A OR B ANDIF C
the grouping is (A OR B) AND C.
The ORIF may be similarly used:
A AND B ORIF C OR D
Is interpreted as (A AND B) OR (C OR D)
The next example shows the use of parenthesized predicate groups to generate the same code as for the previous example.
[bookmark: _Toc412717456]Example 8: IF Boolean operators with parenthesized predicate groups
 IF (10,OR, X
 AR,R2,R3,NZ),AND, X
 (ICM,R1,M3,D2(B2),4) THEN
* Code for F1
 ELSE
* Code for F2
 ENDIF
This generates the same code as before:
 IF (10,OR, X
 AR,R2,R3,NZ),AND, X
 (ICM,R1,M3,D2(B2),4) THEN
+ BC 10,@SPM1 --> 3 (0 0 0 0 0) 0 1
+ AR R2,R3 (0 0 0 0 0) 0 2
+ BZ @SPM2 ¬-> F (0 0 0 0 0) 0 2
+@SPM1 ICM R1,M3,D2(B2) (0 0 0 0 0) 0 3
+ BC 11,@SPM2 ¬-> F (0 0 0 0 0) 0 3
 * Code for F1
 ELSE
+ B @SPM3
+@SPM2 DS 0Y
 * Code for F2
 ENDIF
+@SPM3 DS 0Y
Parenthesized predicate groups can be nested to many levels, limited only by the assembler limit of a maximum of 1,024 characters for positional operands on macro instructions.
[bookmark: _Toc412717157]The ELSEIF macro
The ELSEIF macro is an optional part of the IF macro set. It provides the means for a series of checks, where a function is executed once the predicate condition has been satisfied. The flowchart for an IF including an ELSEIF is:
 ┌────────────┐ True ┌────┐
────→┤ IF(P1) ├──────→┤ F1 ├──→──────────┐
 └─────┬──────┘ └────┘ │
 │ False │
 ↓ │
 ┌─────┴──────┐ True ┌────┐ │
 │ ELSEIF(P2) ├──────→┤ F2 ├──→──────────┤
 └─────┬──────┘ └────┘ │
 │ False ↓
 ↓ │
 ┌─────┴──────┐ True ┌────┐ │
 │ ELSEIF(P3) ├──────→┤ F3 ├──→──────────┤
 └─────┬──────┘ └────┘ │
 │ False ↓
 ↓ │
 │ │
 . .
 . .
 ↓ .
 ┌─────┴──────┐ True ┌────┐ │
 │ ELSEIF(Pn) ├──────→┤ Fn ├──→──────────┤
 └─────┬──────┘ └────┘ │
 │ False │
 ↓ ↓
 ┌─────┴──────┐ ┌────┐ ┌───┴─┐
 │ ELSE ├──────→┤Code├────────→┤ENDIF├─→
 └────────────┘ └────┘ └─────┘
The predicate for the ELSEIF macro is one of the forms permitted for the IF macro.
This example:
[bookmark: _Toc412717457]Example 9: ELSEIF
 if (clc,a,eq,b)
 mvc a,d
 elseif (clc,e,eq,f)
 mvc g,h
 elseif (clc,g,eq,h)
 mvc i,k
 endif
produces:
 if (clc,a,eq,b)
+ CLC a,b (0 0 0 0 0) 0 1
+ BNE @SPM1 ¬-> F (0 0 0 0 0) 0 1
 mvc a,d
 elseif (clc,e,eq,f)
+ B @SPM2
+@SPM1 CLC e,f (0 0 0 0 0) 0 1
+ BNE @SPM3 ¬-> F (0 0 0 0 0) 0 1
 mvc g,h
 elseif (clc,g,eq,h)
+ B @SPM2
+@SPM3 CLC g,h (0 0 0 0 0) 0 1
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 1
 mvc i,k
 endif
+@SPM4 DS 0Y
+@SPM2 DS 0Y
[bookmark: _Toc412717158]The DO macro set
The flowchart represented by this set depends on the keywords used with the predicate p. If the UNTIL or the indexing group of key words (FROM, TO, BY) is used, the flowchart is:
 ┌──────────←───────────┐
 │ │false
 │ ↑
 ↓ ┌─────┐ ┌──┴──┐
 │ │ │ │ │
───→──┴──→───┤ F ├──→───┤IF(P)├──────→
 │ │ │ │ true
 └─────┘ └─────┘
If the WHILE keyword is specified. The flowchart is:
 ┌─────┐
 │ │
 ┌───←───┤ F ├──────←──────┐
 │ │ │ │true
 │ └─────┘ │
 ↓ ↑
 │ ┌──┴──┐
 │ │ │
──→──┴──────────────→─────────┤IF(P)├─────→
 │ │false
 └─────┘
The general DO macro set is written as:
 DO P
 Code for F
 ENDDO
The DO macro accepts zero or one positional parameter and six possible keywords. The positional parameter may be ONCE, INF, BXH, or BXLE. The keywords are LABEL, FROM, TO, BY, WHILE, and UNTIL. The FROM, TO, and BY keywords form an indexing group that specifies ranges and increments when indexing through a loop. They indicate loop termination tests, which are made after execution of the function code F, and the determination of whether to repeat the loop is made by one of the four indexing instructions: BXH, BXLE, BCT, or BCTR. If an indexing instruction is not given explicitly as a positional parameter, one is derived from the other values given. Infinite looping is also permitted through use of the INF positional parameter.
The function of the UNTIL keyword is like that of the loop terminator, except that the determination of whether to repeat the function code F depends upon the result of any condition code setting instruction. When used in combination with the counting or indexing groups, the test specified on the UNTIL is executed before end-of-loop test. If the UNTIL test evaluates TRUE, the loop is exited without executing the counting or indexing function (for that iteration).
The WHILE keyword, on the other hand, generates a test prior to entering the function code of the loop. It may be used with either the indexing group or the UNTIL keyword to provide tests at both initiation and termination of the function code.
The DO macro accepts a name on the DO group from either the name field or the LABEL keyword parameter, with the former taking precedence. This label may be used in the DOEXIT, ITERATE, or ASMLEAVE macros to specify which DO group is iterated or left.
The following combinations of keywords are valid with the DO macro:
FROM, TO, BY,
FROM, TO, BY, WHILE
WHILE, UNTIL
In all cases, the structure must be terminated by the ENDDO macro.
[bookmark: _Ref410904795][bookmark: _Toc412717159]The DO indexing group
The indexing group permits five types of counting and testing to be performed. Each different requirement for counting and testing has a corresponding set of keywords and values, and results in the generation of appropriate loop initialization and termination instructions. The five variations are described in the following paragraphs and are summarized in Table 4 on page 21. The tests to determine which variation is to be used are performed in the order described in Table 3 on page 14.
In the indexing group, each of the three keywords is permitted to indicate a register designation and an optional value. Thus, an indexing DO statement could appear as:
 DO FROM=(Rx,i),TO=(Ry+1,j),BY=Ry,k)
if all keywords in the group were used.
The format of the keywords is keyed to the BXH and BXLE indexing instructions, and the restrictions on the use of these instructions are carried over into the macros. Therefore, if the BY register Ry is an even-numbered register, then the TO register must be Ry+1. If the BY register Ry is an odd-numbered register, then the TO register must be the same register, and hence the TO and BY values (j and k) must be identical.
[bookmark: _Toc412717160]DO loop terminator generation
This table summarized the various instructions that are generated to terminate DO loops. The types of loops are discussed following the table, including examples.
[bookmark: _Ref410907469][bookmark: _Ref410907481]Table 5: DO loop terminator generation
	Type
	Keywords1
	Other conditions
	Result

	Simple DO
	None
	ONCE or omitted
	Null

	Infinite loop
	Neither FROM WHILE nor UNTIL
	INF parameter
	BC 15

	Explicit specification
	FROM, plus TO or BY
	BXH parameter, BXLE parameter
	BXH BXLE

	Counting
	FROM (only)
	Two values. Three values
	BCT BCTR

	Backward indexing
	FROM, TO, and BY
	FROM and TO numeric. FROM value greater than TO value
	BXH

	Backward indexing
	FROM BY
	BY numeric and less than zero
	BXH

	Forward indexing
	Any combination not covered in the above cases
	
	BXLE

	Note:
1. The LABEL keyword may be used on any DO macro without affecting the loop terminator.

[bookmark: _Toc412717161]Simple DO
You may bracket a group of statements with a simple DO and ENDDO combination. No executable statements are generated, only the labels that allow the use of ITERATE and ASMLEAVE macros.
A simple DO is coded by either using the ONCE parameter:
[bookmark: _Toc412717458]Example 10: DO ONCE
 DO ONCE
 Code for DO group
 ENDDO
Or by omitting all parameters:
 DO ,
 Code for DO group
 ENDDO
This will generate the same code:
 DO ONCE
+@SPM1 DS 0Y
 * Code for DO group
 ENDDO
[bookmark: _Toc412717162]Infinite loop
If you wish to execute a loop until some external terminating event takes place (for example, an end of file), then you may do so by specifying the INF positional parameter.
Thus, coding:
[bookmark: _Toc412717459]Example 11: DO INF
 DO INF
 Code for F
 ENDDO
produces:
 DO INF
+@SPM1 DS 0Y
 * Code for DO group
 ENDDO
+ B @SPM1
In order to generate an infinite loop, no FROM, WHILE, or UNTIL keywords can be present. TO and BY keywords, if present, are ignored.
[bookmark: _Toc412717163]Branching to the ENDDO
The ITERATE macro causes a branch to the point prior to the ENDDO macro associated with the active DO macro. If a label is specified, then the ITERATE branches to the point prior to the ENDDO macro associated with the DO macro with the label. Here is the flowchart for this structure:
 ┌─←───←─┐Not Done
 │ ┌──Loop Body───┐ ↑
┌──┐ ┌────┐ ↓ ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
│DO├─→│Init├─→┴─→┤WHILE├───→ : some code :──→┬─→│UNTIL├────→┤Count├─→┬─→┤ENDDO│
└──┘ └────┘ │Test │ : ┌──────────┐ : ↑ │Test │ │ or │ ↑ └─────┘
 └──┬──┘ : │ ITERATE ├────→┤ └──┬──┘ │Index│ │
 │False : └──────────┘ : │ │True │Test │ │
 │ └──────────────┘ │ │ └─────┘ │
 │ │ └────────────────→┤
 │ └────→ outer ENDDO │
 └──────────────────────────→───────────────────────→┘
In the following example, iterate outer creates a branch from the inner DO loop to the point just before the outer ENDDO, associated with the labeled DO loop, while the iterate without a label creates a branch to just before the ENDDO of the inner DO loop:
[bookmark: _Toc412717460]Example 12: Do with ITERATE
 outer do while=2
 do while=4
 mvc a,d
 if (clc,a,eq,b)
 iterate outer
 else
 iterate
 endif
 enddo
 enddo
produces:
outer do while=2
+outer BC 13,@SPM1 ¬-> F (0 0 0 0 0) 0 1
 do while=4
+@SPM2 BC 11,@SPM3 ¬-> F (0 0 0 0 0) 0 1
 mvc a,d
 if (clc,a,eq,b)
+ CLC a,b (0 0 0 0 0) 0 1
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 1
 iterate outer
+ B @SPM5
 else
+ B @SPM6
+@SPM4 DS 0Y
 iterate
+ B @SPM7
 endif
+@SPM6 DS 0Y
 enddo
+@SPM7 B @SPM2
+@SPM3 DS 0Y
 enddo
+@SPM5 B outer
+@SPM1 DS 0Y
[bookmark: _Toc412717164]Leaving a nested DO
It is possible to leave a nested DO macro by specifying a label on the DO macro and the same label as a parameter on a contained ASMLEAVE macro. Here is the flowchart for this structure:
 ┌─←───←─┐Not Done
 │ ┌──Loop Body───┐ ↑
┌──┐ ┌────┐ ↓ ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
│DO├─→│Init├─→┴─→┤WHILE├───→ : :──→───│UNTIL├────→┤Count├─→┬─→┤ENDDO│
└──┘ └────┘ │Test │ : some code : │Test │ │ or │ ↑ └─────┘
 └──┬──┘ : : └──┬──┘ │Index│ │
 │False : : │True │Test │ │
 │ : ┌──────────┐ : │ └─────┘ │
 │ : │ ASMLEAVE ├─────┬─────┴────────────────→┤
 │ : └──────────┘ : └────→ outer ENDDO │
 │ └──────────────┘ │
 └──────────────────────────→───────────────────────→┘
If a label is not specified, then the current macro is exited.
In the following example, asmleave loop breaks from the inner DO loop to the end of the outer (labeled) DO loop, while the asmleave without a label just breaks to the end of the current DO loop:
[bookmark: _Toc412717461]Example 13: DO with ASMLEAVE
 loop do while=2
 do while=4
 mvc a,d
 if (clc,a,eq,b)
 asmleave loop
 else
 asmleave
 endif
 enddo
 enddo
produces:
loop do while=2
+loop BC 13,@SPM1 ¬-> F (0 0 0 0 0) 0 1
 do while=4
+@SPM2 BC 11,@SPM3 ¬-> F (0 0 0 0 0) 0 1
 mvc a,d
 if (clc,a,eq,b)
+ CLC a,b (0 0 0 0 0) 0 1
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 1
 asmleave loop
+ B @SPM1
 else
+ B @SPM5
+@SPM4 DS 0Y
 asmleave
+ B @SPM3
 endif
+@SPM5 DS 0Y
 enddo
+ B @SPM2
+@SPM3 DS 0Y
 enddo
+ B loop
+@SPM1 DS 0Y
[bookmark: _Toc412717165]Explicit specification
If you want to specify an explicit BXH or BXLE loop terminator, you may do so by including it in the form of a positional parameter:
[bookmark: _Toc412717462]Example 14: DO BXLE
 DO BXLE,FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)
 Code for F
 ENDDO
generating, for example:
 DO BXLE,FROM=(R1,20),TO=(R3,100),BY=(R2,4)
+ LHI R1,20
+ LHI R2,4
+ LHI R3,100
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ BXLE R1,R2,@SPM1
The FROM and either the BY or TO keywords must be present in order to provide register designations required for the generation of the BXH or BXLE instruction. The register specified for the BY keyword is used unless it is not present, in which case the one for the TO keyword is used.
[bookmark: _Toc412717166]Counting
This case applies when a count is to be decremented by 1 each time, and the loop is to be terminated when the count reaches zero. This is achieved by specifying just the FROM keyword. In the situation where only two parameters are used, a BCT loop terminator is generated.
For example:
[bookmark: _Toc412717463]Example 15: DO FROM
 DO FROM=(Rx,number)
 Code for F
 ENDDO
produces:
 DO FROM=(R15,3)
+ LHI R15,3
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ BCT R15,@SPM1
For a slightly shorter loop, write the FROM keyword with three parameters to designate an additional register. In this case, a BCTR is generated as the loop terminator.
For example:
[bookmark: _Toc412717464]Example 16: DO FROM (BCTR)
 DO FROM=(Rx,=A(TEST),Ry)
 Code for F
 ENDDO
produces:
 DO FROM=(R15,=A(LIMIT),R14)
+ L R15,=A(LIMIT)
+ BASR R14,0
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ BCTR R15,R14
If no value appears in the FROM keyword, the load instruction is not generated.
[bookmark: _Toc412717167]Backward indexing
To index backward through an array (from high to low storage addresses), you need a BXH test, to end the loop when the lowest address is reached. This may be achieved in two ways.
The first way uses all three keywords, with numeric values for the FROM and TO values i and j, where the FROM value i is greater than the TO value j. Although no test on the BY value k is performed, it should be negative. Also, while the FROM and TO values i and j need not be positive, they are assumed to be negative numerics if and only if a leading minus sign occurs.
Thus, with i greater than j:
[bookmark: _Toc412717465]Example 17: DO, backward indexing
 DO FROM=(Rx,6),TO=(Ry+1,-6),BY=(Ry,-4)
 Code for F
 ENDDO
produces:
 DO FROM=(R1,6),TO=(R3,-6),BY=(R2,-4)
+ LHI R1,6
+ LHI R2,-4
+ LHI R3,-6
+@SPM1 DS 0Y
* Code for F
 ENDDO
+ BXH R1,R2,@SPM1
The other way is to omit the TO keyword. The BY value k is a negative number (it has a leading minus sign), indicating backward indexing. Although no test on the register number Ry is performed, it must have an odd value.
When k is negative, then:
[bookmark: _Toc412717466]Example 18: DO, backward indexing without TO
 DO FROM=(Rx,=A(END-START)),BY=(Ry,-2)
 Code for F
 ENDDO
produces:
 DO FROM=(R1,=A(END-START)),BY=(R3,-2)
+ L R1,=A(END-START)
+ LHI R3,-2
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ BXH R1,R3,@SPM1
[bookmark: _Toc412717168]Forward indexing
To index forward through an array (from low to high storage addresses), you need a BXLE test, to end the loop when the highest address is reached. If no explicit terminator is specified, and if none of the preceding combinations of keywords and values exist, then forward indexing is assumed, and a BXLE terminator is generated.
For example:
[bookmark: _Toc412717467]Example 19: DO, forward indexing
 DO FROM=(Rx,1),TO=(Ry+1,10),BY=(Ry,2)
 Code for F
 ENDDO
produces:
 DO FROM=(R1,1),TO=(R3,10),BY=(R2,2)
+ LHI R1,1
+ LHI R2,2
+ LHI R3,10
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ BXLE R1,R2,@SPM1
[bookmark: _Ref412104566][bookmark: _Toc412717169]DO initial-REPEAT
This option allows some logic to be specified for execution at the beginning of the loop and some other logic on each repetition of the loop. It is particularly useful for loops that read data sets, as shown in the example.
The initial logic is written as one or more instructions or macro instructions in the first positional parameter on the DO macro. Each instruction or macro instruction is written with a comma, instead of spaces, between the op code and the operand field and the entire instruction is enclosed in a set of parentheses. Labels, remarks and comment statements are not allowed. Keyword operands (for macro instructions) are not supported. If there is more than one instruction or macro instruction, the entire group of instructions is enclosed in an additional set of parentheses. (Note that this way of writing program logic is similar to the format used for predicates except that there is no condition and no Boolean connectors.)
The logic to be executed on each repetition of the loop is written in the same manner, and with the same restrictions, but as the value of the keyword parameter REPEAT.
This example also illustrates use of the EXITLABEL keyword parameter. EXITLABEL may be coded on any DO macro to specify the label to be used for the code immediately following the DO group. (If EXITLABEL is omitted, a label is generated if required.) This is useful in situations where the same label must be specified elsewhere. In this example the exit label specified, EOD, would be specified again as the end-of-data address on the DCB macro. (If the data set was empty, control would pass immediately to the instruction following the DO, without executing the DO body logic or the REPEAT code.)
For example:
[bookmark: _Toc412717468]Example 20: DO initial-REPEAT
* DO initial-REPEAT
 do (GET,IN,FST_REC), X
 repeat=(GET,IN,OTHER_RECS),EXITLABEL=EOD
* DO body logic
 enddo ,
This generates:
* DO initial-REPEAT
 do (GET,IN,FST_REC), X
 repeat=(GET,IN,OTHER_RECS),EXITLABEL=EOD
+ GET IN,FST_REC 02-ASMMGEN1
+* 1@L1D
+* 1@L1D
+ LA 1,IN LOAD PARAMETER REG 1 04-IHBINNRA
+ LA 0,FST_REC LOAD PARAMETER REG 0 04-IHBINNRA
+ SLR 15,15 CLEAR REGISTER @L1A 03-GET
+ ICM 15,7,49(1) LOAD GET ROUTINE ADDR @L1C 03-GET
+ BASR 14,15 LINK TO GET ROUTINE @L3C 03-GET
+@SPM1 DS 0Y 01-00000542
 * DO body logic
 enddo ,
+ GET IN,OTHER_RECS 02-ASMMGEN1
+* 1@L1D
+* 1@L1D
+ LA 1,IN LOAD PARAMETER REG 1 04-IHBINNRA
+ LA 0,OTHER_RECS LOAD PARAMETER REG 0 04-IHBINNRA
+ SLR 15,15 CLEAR REGISTER @L1A 03-GET
+ ICM 15,7,49(1) LOAD GET ROUTINE ADDR @L1C 03-GET
+ BASR 14,15 LINK TO GET ROUTINE @L3C 03-GET
+ B @SPM1 01-00000840
+EOD DS 0Y 01-00000876
[bookmark: _Toc412717170]DO FROM-NEXT
In this option a register is loaded as specified by the FROM keyword when the loop is entered and then reloaded from, possibly, a different source, specified by the NEXT keyword, on each repetition of the loop. This option can be used for loops that process elements in a linked list.
For example:
[bookmark: _Toc412717469]Example 21: DO FROM-NEXT
* DO FROM-NEXT
EL USING ELEMENT,R2
 do FROM=(R2G,WS_ANCHOR),NEXT=EL.NEXT
* DO body logic
 enddo ,
generates:
* DO FROM-NEXT
 EL USING ELEMENT,R2
 do FROM=(R2G,WS_ANCHOR),NEXT=EL.NEXT
+ LG R2G,WS_ANCHOR
+@SPM1 DS 0Y
 * DO body logic
 enddo ,
+ LG R2G,EL.NEXT
+ B @SPM1
[bookmark: _Toc412717171]END.LOOP predicate
The special END.LOOP predicate, coded END.LOOP (case-insensitive), may be used, with some restrictions, as a predicate in a predicate string specified by a WHILE or UNTIL keyword parameter on a counting, indexing, initial-REPEAT or FROM-NEXT DO or STRTSRCH macro. It generates code to perform the same test as would normally be performed by the ENDDO of a counting or indexing loop, the same logic as specified by the REPEAT keyword on an initial-REPEAT loop or the same register reloading function as specified by the NEXT keyword on a FROM-NEXT loop, but at the point where the END.LOOP predicate is coded, instead of at the end of the loop. It thus provides a means to change the order of precedence between UNTIL and end-of-loop tests. When one or more END.LOOP predicates are specified in a DO or SEARCH loop, the function normally performed by ENDDO is suppressed and replaced by an unconditional branch instruction that branches to the top of the loop.
In the following example, the indexing test is inverted (BXH instead of BXLE) and moved to the top of the loop, leaving an unconditional branch at the end of the loop:
[bookmark: _Toc412717470]Example 22: Do, forward indexing with END.LOOP predicate
* DO FROM-NEXT with END.LOOP predicate
EL USING ELEMENT,R2
 do from=(R1,1),TO=(R3,10),BY=(R2,2), X
 while=(not,end.loop)
* DO body logic
 enddo ,
This generates:
* DO FROM-NEXT with END.LOOP predicate
 EL USING ELEMENT,R2
 do from=(R1,1),TO=(R3,10),BY=(R2,2), X
 while=(not,end.loop)
+ LHI R1,1
+ LHI R2,2
+ LHI R3,10
+@SPM1 BXH R1,R2,@SPM2 ¬-> F (0 0 0 0 0) 0 1
 * DO body logic
 enddo ,
+ B @SPM1
+@SPM2 DS 0Y
[bookmark: _Toc412717172]Register initialization
If you wish to load a register yourself, or the register remains loaded from a previous operation, then omitting the corresponding value field prevents generation of a register load instruction. If you supplied one or more of the values i, j, or k, thus indicating that you want the macro processor to generate the appropriate load instructions, the following rules apply.
The value specified must be one of the following:
an unsigned decimal number in the range 0 to 2,147,483,647 (231-1) (without commas)
a signed decimal number in the range -2,147,483,648 to +2,147,483,647 (without commas)
an absolute symbol with a value in the range -2,147,483,648 to +2,147,483,647 (without commas)
a length attribute reference (L’symbol) where the length attribute value is available at conditional assembly time and is one of the following: 1, 2, 3, 4 or 8
a relocatable symbol whose length is available at conditional assembly time and whose length is one of the following: 1, 2, 3, 4 or 8
a literal with or without a type extension, with or without a length modifier and with no other modifiers. The length modifier, if present, must not be a bit length modifier and must specify a non-parenthesized decimal number with one of the following values: 1, 2, 3, 4 or 8
a parenthesized register.
In each case, one of two instructions may be generated (or, for 3-byte values, one of two instruction pairs), a “31-bit instruction” (or instruction pair) and a “64-bit instruction” (or instruction pair). The 64-bit instruction (pair) is generated if either SYSSTATE AMODE64=YES is in effect or if the register to be loaded is defined as a 64-bit general register (that is, it is a symbol with an assembler attribute of GR64, as specified by the fifth operand of an EQU statement). Otherwise the 31-bit instruction (pair) is generated
For unsigned decimal numbers between 1 and 32,767 and for signed decimal numbers from -32,768 to +32,767 and absolute symbols with values in this range, an LHI (31-bit) or LGHI (64-bit) instruction is generated.
For unsigned decimal numbers between 32,768 and 2,147,483,647 (231-1) and for signed decimal numbers from -2,147,483,648 to -32,769 and from +32,768 to +2,147,483,647 and absolute symbols with values in these ranges, an IILF (31-bit) or LGFI (64-bit) instruction is generated.
For the value 0 (whether signed or not) and for absolute symbols with a value of 0, an SR (31-bit) or SGR (64-bit) instruction is generated to clear the register.
Decimal numbers and absolute symbols with values outside these ranges are not supported and will result in an assembly error.
For length attribute references, an LHI (31-bit) or LGHI (64-bit) instruction is generated for lengths between 0 and 32,767 and an IILF (31-bit) or LGFI (64-bit) instruction is generated for lengths outside this range
For relocatable symbols with a length of:
1, the generated instruction is LB (31-bit) or LGB (64-bit)
2, the generated instruction is LH (31-bit) or LGH (64-bit
3, the 31-bit generated instruction pair is LB to load the third byte of the value, then ICM with a mask of B’0110’ to insert the first two bytes and the 64-bit instruction pair is LGB to load the third byte of the value, then ICM with a mask of B’0110’ to insert the first two bytes
4, the generated instruction is L (31-bit) or LGF (64-bit)
8, the generated instruction is LG (both 31-bit and 64-bit)
For literals of types F, H, A, Y, V, J, Q and R without a length modifier, the length used to determine the instructions generated is the implicit length for the type specified, taking into account any type extension present. For literals of types B and X, and of type C without either no type extension or a type extension of A or E, all without a length modifier, the length value used is 1. For literals of type C with a type extension of U and without a length modifier, the length value used is 2. For all literals that have a length modifier, the length used is the value specified by the length modifier.
The generated instructions are the same as listed above for relocatable symbols
When the value to be loaded is specified as a parenthesized register, the instruction generated is LR (31-bit) or LGR (64-bit).
Table 6, below, summarizes the rules followed in initializing registers.
[bookmark: _Ref411938016][bookmark: _Ref411938037]Table 6: Generated instructions for given values
	Value given
	Instruction generated

	
	31-bit
	64-bit

	None
	None

	0 or absolute symbol with value 0
	SR Rx,Rx
	SGR Rx,Rx

	-32768 ≤ number < 0, or 1 ≤ number ≤ 32767
	LHI Rx,number
	LGHI Rx,number

	absolute symbol with value between -32768 and -1 or between 1 and 32767
	LHI Rx,symbol
	LGHI Rx,symbol

	number < -32768 or ≥ 32768
	IILF Rx,number
	LGFI Rx,number

	absolute symbol with value < -32768 or ≥ 32768
	IILF Rx,symbol
	LGFI Rx,symbol

	(Register)
	LR Rx,Ry
	LGR Rx,Ry

	Other (must be relocatable symbol or literal, as described above). When length is:
	
	

		1
	LB Rx,Other
	LGB Rx,Other

		2
	LH Rx,Other
	LGH Rx,Other

		3
	LB Rx,Other+2
ICM Rx,B’0110’,Other
	LGB Rx,Other+2
ICM Rx,B’0110’,Other

		4
	L Rx,Other
	LG Rx,Other

		8
	LG Rx,Other
	LG Rx,Other

[bookmark: _Toc412717173]The UNTIL and WHILE keywords
The test generated by the UNTIL keyword, as with those generated by the indexing group, is used at the loop termination. The test generated by the WHILE keyword, on the other hand, tests whether to enter a loop at all prior to its execution. For both keywords, the parameterization is identical to that of the IF macro. The UNTIL and WHILE operands accept compound predicates in the same format as used on the IF statement, with the exception that the CC= keyword operand is not allowed.
The DO WHILE example:
[bookmark: _Toc412717471]Example 23: DO WHILE
 DO WHILE=(TM,FLAGS,X’80’,O)
 Code for F
 ENDDO
produces:
 DO WHILE=(TM,FLAGS,X'80',O)
+@SPM1 TM FLAGS,X'80' (0 0 0 0 0) 0 1
+ BNO @SPM2 ¬-> F (0 0 0 0 0) 0 1
 * Code for F
 ENDDO
+ B @SPM1
+@SPM2 DS 0Y
The DO UNTIL is coded in the same manner:
[bookmark: _Toc412717472]Example 24: DO UNTIL
 DO UNTIL=(TM,FLAGS,X’80’,O)
 Code for F
 ENDDO
and produces:
 DO UNTIL=(TM,FLAGS,X'80',O)
+@SPM1 DS 0Y
 * Code for F
 ENDDO
+ TM FLAGS,X'80' (0 0 0 0 0) 0 1
+ BNO @SPM1 ¬-> F (0 0 0 0 0) 0 1
It is possible to create a compound DO with UNTIL and WHILE parameters on the same macro. For example:
[bookmark: _Toc412717473]Example 25: DO WHILE, UNTIL
 DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=10
 Code for F
 ENDDO
produces:
 DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=10
+@SPM1 SRP AMOUNT,64-3,5 (0 0 0 0 0) 0 1
+ BNM @SPM2 ¬-> F (0 0 0 0 0) 0 1
 * Code for F
 ENDDO
+ BC 5,@SPM1 ¬-> F (0 0 0 0 0) 0 1
+@SPM2 DS 0Y
The operand formats for the WHILE and UNTIL keywords are the same as those of the IF-type macros and can be used with Boolean operators as in the following example:
[bookmark: _Toc412717474]Example 26: DO WHILE, UNTIL (Boolean)
 DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,eq,4), X
 UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)
 Code for F
 ENDDO
produces (with ASMMREL ON in effect):
 DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,eq,4), X
 UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)
+@SPM1 CLI WORD1,2 (0 0 0 0 0) 0 1
+ JE @SPM3 --> T (0 0 0 0 0) 0 1
+ CLI WORD1,4 (0 0 0 0 0) 0 2
+ JNE @SPM2 ¬-> F (0 0 0 0 0) 0 2
+@SPM3 DS 0Y
 * Code for F
 ENDDO
+ CLI WORD1,1 (0 0 0 0 0) 0 1
+ JE @SPM2 --> T (0 0 0 0 0) 0 1
+ CLI WORD1,3 (0 0 0 0 0) 0 2
+ JNE @SPM1 ¬-> F (0 0 0 0 0) 0 2
+@SPM2 DS 0Y
[bookmark: _Toc412717174]Looping with DOEXIT and EXITIF
To obtain the equivalent capability of logical expressions for looping operations, the DOEXIT or EXITIF macro may be used, within their respective sets. For a Boolean WHILE, the above macros are placed immediately following the DO or STRTSRCH while for the UNTIL the placement of these macros is immediately before the ENDDO or ENDLOOP.
EXITIF can only be coded within a STRTSRCH structure. Multiple EXITIFs are allowed.
DOEXIT must be placed within a DO macro set. In the following example the DOEXIT macro statement causes the generation of a branch instruction to a label at the ENDDO macro statement.
[bookmark: _Toc412717475]Example 27: DO FROM with DOEXIT
 do from=2
 if (clc,a,eq,b)
 mvc a,d
 doexit (2)
 else
 mvc g,h
 endif
 enddo
The DOEXIT macro allows specification of which DO group to exit by the DO keyword parameter. If the DO keyword is not specified then the DOEXIT will exit the innermost DO group.
Here is an example where the DOEXIT is exiting from a DO labeled MAINLOOP (in this case where there is only one DO loop, the use of the DO keyword is not required):
[bookmark: _Toc412717476]Example 28: DO INF with DOEXIT
* Infinite DO
 DO INF,LABEL=MAINLOOP
+MAINLOOP DS 0Y
 l 1,fullword
 DOEXIT DO=MAINLOOP,(LTR,1,1,z)
+ LTR 1,1 (0 0 0 0 0) 0 1
+ BZ @SPM1 ¬-> F (0 0 0 0 0) 0 1
 mvc i,k
 ENDDO
+ B MAINLOOP
+@SPM1 DS 0Y
[bookmark: _Toc412717175]The SEARCH macro set
The SEARCH macro set is provided to allow more complex loops to be coded. All of the operands above for DO loops may also be used on the STRTSRCH macro.
The flowchart for the SEARCH macro set is:
 ┌─────────────────←───────────────────────────┐
 ↓ ↑ not finished
 │ ┌────┴────┐
 │ ┌───┐ ┌───────────┐ false ┌───┐ │test for │ ┌───┐
──────→┴─→─┤ A ├─→─┤ EXITIF (x)├─→──────┤ C ├─→─┤end loop ├─→─┤ D ├─→─┬──→
STRTSRCH └───┘ └─────┬─────┘ └───┘ │condition│ └───┘ ↑
 ↓ true ORELSE └─────────┘ ENDSRCH │
 ┌─────┐ ENDLOOP │
 │ B ├─────────────────────────────────────→───┘
 └─────┘
The general structure of the SEARCH macro set is:
 STRTSRCH (any DO-type loop operands)
 Process Code A
 EXITIF (any IF-type operands)
 Process Code B
 ORELSE
 Process Code C
 ENDLOOP
 Process Code D
 ENDSRCH
Multiple EXITIFs are permissible. However, for each EXITIF, an ORELSE must appear at some point in the code before the next EXITIF. However, the last ORELSE (the one before the ENDLOOP macro) is optional.
For example:
[bookmark: _Toc412717477]Example 29: SEARCH, 1 EXITIF
 STRTSRCH UNTIL=(TM,0(R4),X’55’,NO),WHILE=(CH,R9,LT,=H’58’)
 Process A
 EXITIF CC=8
 Process B
 ORELSE
 Process C
 ENDLOOP
 Process D
 ENDSRCH
produces:
 STRTSRCH UNTIL=(TM,0(R4),X'55',NO),WHILE=(CH,R9,LT,=H'58')
+@SPM1 CH R9,=H'58' (0 0 0 0 0) 0 1
+ BNL @SPM2 ¬-> F (0 0 0 0 0) 0 1
 * Process AL=MAINLOOP
 EXITIF CC=8
+ BC 7,@SPM3 ¬-> F (0 0 0 0 0) 0 1
 * Process BO=MAINLOOP,(LTR,1,1,z)
 ORELSE
+ B @SPM4
+@SPM3 DS 0Y
 * Process C
 ENDLOOP
+ TM 0(R4),X'55' (0 0 0 0 0) 0 1
+ BO @SPM1 ¬-> F (0 0 0 0 0) 0 1
+@SPM2 DS 0Y
 * Process D
 ENDSRCH
+@SPM4 DS 0Y
Another example:
[bookmark: _Toc412717478]Example 30: SEARCH, 2 EXITIFs
 STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P
* Process A
 EXITIF Z,AND, X
 LTR,R2,R3,0,ORIF, X
 (CLC,DEC(L,B),EQ,=C’WORD’),AND, X
 NP
 Process B
 ORELSE
 Process C
 EXITIF CC=5
 Process D
 ENDLOOP
 Process E
 ENDSRCH
produces:
 STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P
+@SPM1 CLM R2,M1,D2(B2) (0 0 0 0 0) 0 1
+ BL @SPM2 ¬-> F (0 0 0 0 0) 0 1
 * Process A
 EXITIF Z,AND, X
 LTR,R2,R3,O,ORIF, X
 (CLC,DEC(L,B),EQ,=C'WORD'),AND, X
 NP
+ BNZ @SPM3 ¬-> 3 (0 0 0 0 0) 0 1
+ LTR R2,R3 (0 0 0 0 0) 0 2
+ BO @SPM4 --> T (0 0 0 0 0) 0 2
+@SPM3 CLC DEC(L,B),=C'WORD' (0 0 0 0 0) 0 3
+ BNE @SPM5 ¬-> F (0 0 0 0 0) 0 3
+ BP @SPM5 ¬-> F (0 0 0 0 0) 0 4
+@SPM4 DS 0Y
 * Process B
 ORELSE
+ B @SPM6
+@SPM5 DS 0Y
 * Process C
 EXITIF CC=5
+ BC 10,@SPM7 ¬-> F (0 0 0 0 0) 0 1
 * Process D
 ENDLOOP
+ B @SPM6
+@SPM7 BNP @SPM1 ¬-> F (0 0 0 0 0) 0 1
+@SPM2 DS 0Y
 * Process E
 ENDSRCH
+@SPM6 DS 0Y
[bookmark: _Ref412034422][bookmark: _Toc412717176]The CASE macro set
The CASE macro set selects one of a set of functions for execution, depending on the contents of a specified register (the case register). The determination of which of the functions is to be executed involves the use of an address vector (sequence of addresses), a branch vector (sequence of branch instructions) or a displacement vector (a sequence of halfword displacements.
Two types of case sets are supported, integer and bit-field. Integer is the default.
For integer case sets, the function is selected using the value in the case register directly. For bit-field case sets, the register is assumed to contain a bit field. Each case specifies one or more binary values that are ORed together at assembly time to form a single bit combination. At least one of the bits in that bit combination must be on in the case register for the corresponding function to be selected.
The flowchart for the CASE program figure for integer cases is:
 ↓
┌────┴────┐
│ │
│ IF(i) │
│ │
└────┬────┘
 ↓ ┌─────┐
 │i=1 │ │
 ├─────→────┤ F1 ├─→───┐
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=2 │ │ │
 ├─────→────┤ F2 ├─→───┼───→
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=3 │ │ │
 ├─────→────┤ F3 ├─→───┼───→
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=m │ │ │
 └─────→────┤ Fm ├─→───┘
 │ │
 └─────┘
and the macro is written like this:
 CASENTRY (Rx,c),POWER=n,VECTOR=listtype
 CASE a,d
 Code for F1
 CASE b,c
 Code for F2
 CASE f
 Code for F3
 .
 .
 .
 CASE t
 Code for Fm
 ENDCASE
The flowchart for the CASE program figure for bit-field cases is:
 ↓
┌────┴──────────────────┐
│ │
│ IF ((i AND bf) NE 0) │
│ │
└────┬──────────────────┘
 ↓ ┌─────┐
 │i=1 │ │
 ├─────→────┤ F1 ├─→───┐
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=2 │ │ │
 ├─────→────┤ F2 ├─→───┼───→
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=4 │ │ │
 ├─────→────┤ F3 ├─→───┼───→
 │ │ │ │
 │ └─────┘ │
 ↓ │
 │ ┌─────┐ │
 │i=2**m │ │ │
 └─────→────┤ Fm ├─→───┘
 │ │
 └─────┘
and the macro is written like this:
 CASENTRY (Rx,bf),TYPE=BITFIELD
 CASE a,d
 Code for F1
 CASE b,c
 Code for F2
 CASE f
 Code for F3
 .
 .
 .
 CASE t
 Code for Fm
 ENDCASE
Notes:
1. casetype can be INTEGER or BITFIELD. INTEGER is the default
1. listtype can be ADDRESS, B, BR or DISP. B and BR are equivalent. For TYPE=INTEGER, ADDRESS is the default when relative addressing is not in effect and B (or BR) is the default when relative addressing is in effect. For TYPE=BITFIELD, DISP is the default and the only value supported.
1. Statements between the CASENTRY macro and the first CASE statement are assembled, but not executed. Statements should not be placed between CASENTRY and CASE.
1. An integer value cannot be used more than once in an integer case set.
1. The same bit may not be specified more than once in any bit value in a bit-field case set.
For integer case sets:
The values a, b, …, t are either members of a set of integers greater than zero, or nonzero multiples of a power of 2 (for example, 4, 12, and 16). Zero (0) is not a valid case number. The positional sublist (Rx,c) specifies a field, c, containing the case number and a general register (the case register) to be loaded with that case number. The keyword operands POWER and VECTOR are optional. Values specified may be unsigned decimal or hexadecimal self-defining terms or absolute symbols. (An “absolute symbol” is an ordinary symbol of type U with an absolute value.)
The operand POWER=n (where n is an integer) refers to a power of 2 and indicates that the case numbers are multiples of that power of 2. Thus, POWER=3 indicates that the case numbers are multiples of 8.
The default value for POWER is 0 which indicates that the case numbers are positive integers that are necessarily powers of 2.
The operand VECTOR=B or VECTOR=BR indicates that a branch vector is to be generated rather than an address vector. Fewer instructions are generated for branch vectors. However, you must be sure that the branch vector table is addressable by the initialization code, that the code for each of the cases is addressable, and that the code after the ENDCASE macro is addressable by a current base register. If branch relative instructions are being used, then the CASENTRY macro will ignore the VECTOR keyword, will always generate a branch table, and may use register 0 in the generated code.
Register 0 may not be used as the case register (Rx).
Unless CHECK=YES is specified, it is your responsibility to ensure that the case number is within the indicated range. When CHECK=YES is specified, the macro generates additional instructions to branch to the instruction following the ENDCASE macro if the case number is outside the range. CHECK=YES requires both SYSSTATE ARCHLVL=2 and the extended-immediate z/Architecture facility (assembler option OPTABLE=ZS3 or higher)
Rx is the case register. If you wish to load register Rx with the case number yourself, or the register remains loaded from a previous operation, specifying the single value Rx as the first positional parameter prevents generation of a register load instruction. If you specify c, the macro processor generates the appropriate load instructions in the same way as for DO loops (see Register initialization on page 30), except that c must be a relocatable symbol. Once the case register has been loaded (if it has not already been loaded), it is adjusted according to the POWER value (whether explicitly or implicitly specified), so that the correct CASE is selected.
Unless SAVE=YES is specified, the contents of the case register are destroyed and are only required during execution of the initial code generated by the macro expansion. Hence, it is possible to use the same register for other purposes within the function code for any CASEs. If SAVE=YES is specified, the contents of the case register are restored after the function code for the selected CASE, if any, has been executed.
Register 0 is used as work register for all options with relative addressing except when VECTOR=ADDRESS with the ASMMREL CLOCTR=constants-location-counter-name option is used (see Example 31 on page 43). However, with SAVE=YES, register 0 is restored before calling the selected CASE functions, if any.
When SAVE=YES is specified,
SYSSTATE ARCHLVL=2 (or higher) must be in effect
the general-instructions-extension z/Architecture facility must be installed on the target processor (the macro checks that op code CLIJ is defined as a machine instruction, which means that assembler option OPTABLE=ZS5 or higher must be specified)
bits 32-63 of the case register are saved in bits 0-31 of the same register and bits 32-63 of register 0, if changed, are saved in bits 0-31 of register 0. As a result, the previous contents of bits 0-31 of these registers are lost.
For bit-field case sets:
Bit-field case sets require the following:
COMPAT=YES must not be specified
SYSSTATE ARCHLVL=2 (or higher) must be in effect
the high-word z/Architecture facility must be installed on the target processor (the macro checks that op code AHHHR is defined as a machine instruction, which means that assembler option OPTABLE=ZS4 or higher must be specified)
The CHECK keyword parameter is ignored. The generated code for TYPE=BITFIELD ensures that only bits in the bit field corresponding to bit combinations specified on CASE macros determine the case, if any, selected. (This is equivalent to the logic performed by CHECK=YES for integer case sets.)
The SAVE and POWER keyword parameters cannot be used. The keyword parameter VECTOR should either specify DISP or be omitted.
The macro uses the following registers as work registers. These registers are not restored:
register 0
the case register (which must be a register other than 0 or 1, see below)
the register numbered one lower than the case register if the case register is an odd-numbered register.
The positional sublist (Rx,bf) specifies a field, bf, containing the bit field to be tested and a general register (the case register), other than registers 0 or 1, to be loaded with that bit field. A given case is selected if a bit corresponding to any of the case’s bit combination values is on in the bit string. The macro expansion generates a FLOGR (find leftmost one) instruction to locate the position of the first bit of the bit-field set to 1, starting from the left. Because of this, the register conventions used by that instruction are carried over to the macro, as follows.
If the case register is odd-numbered (for example 3, R3, R3G) the FLOGR instruction is generated with R2 set to the case register and R1 set to the register numbered one lower than the case register. This means the case register will have one or more bits set to zero when the CASENTRY macro is executed and the general register numbered one lower will have its contents destroyed
If the case register is an even-numbered register (for example 2, R2, R2G) the FLOGR instruction is generated with R1 set to the case register and R2 set to 0. Then the contents of the case register are destroyed and the contents of the register numbered one higher are replaced with the contents of the bit field with one or more bits set to zero.
Whichever register is specified as the case register, register 0 is used as a work register and its contents are destroyed.
If you wish to load the case register with the bit field yourself, or the register remains loaded from a previous operation, specifying the single value Rx as the first positional parameter, or specifying NOLOAD as the third element of the sublist, prevents generation of a register load instruction. (NOLOAD can only be specified with bf. The difference between specifying bf with NOLOAD and specifying Rx alone is explained below.) If you specify bf without NOLOAD, the macro processor generates the appropriate load instructions in the same way as for DO loops (see Register initialization on page 30), except that bf must be a relocatable symbol. The contents of both the case register Rx and either the next lower-numbered register Rx-1 (if Rx is an odd-numbered register) or the next higher-numbered register Rx+1 (if Rx is an even-numbered register) are destroyed and are only required during execution of the initial code generated by the macro expansion. Hence, it is possible to use these registers for other purposes within the function code for any CASEs.
The length, in bytes, of the bit field is required to properly determine the case to be selected. The following bit field lengths are supported: 1, 2, 3, 4 and 8. The length of the bit field is determined as follows.
If Rx is specified alone, the length of the bit field is assumed to be 8 bytes
If bf is specified, with or without NOLOAD, the length of the bit field is the value of the length attribute of the relocatable symbol specified for bf. This length must be one of the values listed above.
Specifying bf with NOLOAD is useful when the entire CASE set is enclosed in a DO loop and repeated once for each bit in the bit field. Then the case register is loaded from the bit field before entering the DO loop, an odd-numbered case register is specified and the loop is repeated until the case register becomes zero.
a, b, …, t specify bit combinations. Each should be an unsigned decimal or hexadecimal self-defining term or an absolute symbol. (An “absolute symbol” is an ordinary symbol of type U with an absolute value.) Alternatively, a bit combination can be specified as a sublist of two elements. Then the first element should be an unsigned decimal or hexadecimal self-defining term or an absolute symbol, as described above, while the second element should be an unsigned decimal number in the range 0 to 7, specifying the displacement in bytes, within the bit field, to which the bit combination value applies. The value of the bit combination, when multiplied by 28(l-1-d) (2 to the power (8 × (l – 1 – d))) where l is the bit field length as determined above and d is the displacement specified (or 0 if no displacement is specified), must lie in the range 1 to 264-1. A given bit must be on in no more than one bit combination, after the adjustment just described, in the entire case set.
[bookmark: _Toc412717177]Integer case set examples
This example of an integer case set uses case numbers 1, 2, 3, 4, and 5. The case register is preloaded with the case number.
[bookmark: _Toc412717479]Example 31: CASE, integer
 CASENTRY Rx
 CASE 2,1,4
 Code for F1
 CASE 5
 Code for F2
 ENDCASE
This is interpreted to mean that if a 1, 2, or 4 is present in general register Rx, the code for F1 is executed. If a 5 is present, the code for F2 is executed. If a value of 3 is in Rx, no function code is to be executed. In all cases, control is then to be passed to the code after the ENDCASE macro.
The example produces:
Rx EQU 3,,,,GR32
 CASENTRY RX
+ SLA RX,2
+ A RX,@SPM3
+ L RX,0(,RX)
+ BR RX
+@SPM3 DC A(@SPM2)
 CASE 2,1,4
+@SPM4 DS 0Y
 * Code for F1
 CASE 5
+ L RX,@SPM2
+ BR RX
+@SPM5 DS 0Y
 * Code for F2
 ENDCASE
+ L RX,@SPM2
+ BR RX
+@SPM2 DC A(@SPM1)
+ DC A(@SPM4)
+ DC A(@SPM4)
+ DC A(@SPM1)
+ DC A(@SPM4)
+ DC A(@SPM5)
+@SPM1 DS 0Y
This example shows a CASE macro using a branch vector and case numbers that are multiples of 8. The case register is to be loaded from WS_CASE:
[bookmark: _Toc412717480]Example 32: CASE, integer with POWER
CASE_NUM DS H
 ‘
C_24 EQU 24
Rx EQU 3,,,,GR32
 CASENTRY (Rx,WS_CASE),POWER=3,VECTOR=B
 CASE 8,C_24
* Code for F1
 CASE X’10’,32
* Code for F2
 ENDCASE
The example produces:
Rx EQU 3,,,,GR32
 C_24 EQU 24
 CASENTRY (Rx,WS_CASE),POWER=3,VECTOR=B
+ LH Rx,WS_CASE
+ SRA Rx,1
+ B @SPM2(Rx)
 CASE 8,C_24
+@SPM4 DS 0Y
+#@EQE_C_24 EQU 0,,,(C_24)
 * Code for F1
 CASE X'10',32
+ B @SPM1
+@SPM5 DS 0Y
 * Code for F2
 ENDCASE
+@SPM2 B @SPM1
+ B @SPM4
+ B @SPM5
+ B @SPM4
+ B @SPM5
+@SPM1 DS 0Y
The next example shows the use of register 0 and the JAS (or BRAS) instruction when ASMMREL ON is in effect. Also, the macros have a branch table generated by default. (In this example, the case register is loaded from a 3-byte field.)
[bookmark: _Toc412717481]Example 33: CASE, integer with relative addressing
rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY (Rx,WS_CAS3),POWER=3
+ LB Rx,WS_CAS3+2
+ ICM Rx,B'0110',WS_CAS3
+ SRA Rx,1
+ JAS 0,*+8+4*@SPM3
+@SPM2 DS (2*(@SPM3+1))Y
+ ALR Rx,0
+ BR Rx
 CASE 8,24
+@SPM4 DS 0Y
 * code for F1
 CASE 16,32
+ J @SPM1
+@SPM5 DS 0Y
 * code for F2
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 4
+ J @SPM1
+ J @SPM4
+ J @SPM5
+ J @SPM4
+ J @SPM5
+ ORG ,
+@SPM1 DS 0Y
The next example shows the use of LARL when both ASMMREL and SYSSTATE ARCHLVL=2 are in effect and when VECTOR=ADDRESS is specified. (When VECTOR=ADDRESS is not specified the generated code is similar to the previous example).
[bookmark: _Toc412717482]Example 34: CASE, integer with relative addressing, VECTOR=ADDRESS and SYSSTATE ARCHLVL=2
rx equ 3,,,,GR32
 SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2 OSREL=00000000
 ASMMREL ON
 CASENTRY Rx,POWER=3,VECTOR=ADDRESS
+ SRA Rx,1
+ LARL 0,@SPM2
+ ALR Rx,0
+ BR Rx
+@SPM2 DS (@SPM3+1)A
 CASE 8,24
+@SPM4 DS 0Y
 * code for F1
 CASE 16,32
+ J @SPM1
+@SPM5 DS 0Y
 * code for F2
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 4
+ DC A(@SPM1)
+ DC A(@SPM4)
+ DC A(@SPM5)
+ DC A(@SPM4)
+ DC A(@SPM5)
+ ORG ,
+@SPM1 DS 0Y
The following example shows how more efficient code is generated when the name of the location counter used for constants is specified by the CLOCTR keyword parameter on the ASMMREL macro. This is possible when a program using relative addressing is structured to use separate location counters for the program code and the constants, with relative addressing being used for the program code section and base-displacement addressing for the constants section. (In non-reentrant programs, the constants section might also include work fields.) When the constants location counter name is specified on the ASMMREL macro in this way, the CASENTRY places the address vector table in the constants section, where it can be addressed using the base register already set up for accessing constants. (Note that we do not need to specify the name of the program code location counter, PROGRAM in this case, since the macro obtains this name from system variable symbol &sysloc.)
[bookmark: _Ref412484050][bookmark: _Ref412484024][bookmark: _Toc412717483]Example 35: CASE, integer with relative addressing, VECTOR=ADDRESS and constants location counter name
rx equ 3,,,,GR32
 ASMMREL ON,CLOCTR=CONSTANTS
 CASENTRY Rx,POWER=3,VECTOR=ADDRESS
+ SRA Rx,1
+ L Rx,@SPM2(Rx)
+ BR Rx
+CONSTANTS LOCTR X
+ ,
+@SPM2 DS (@SPM3+1)A
+PROGRAM LOCTR ,
 CASE 8,24
+@SPM4 DS 0Y
 * code for F1
 CASE 16,32
+ J @SPM1
+@SPM5 DS 0Y
 * code for F2
 ENDCASE
+CONSTANTS LOCTR X
+ ,
+ ORG @SPM2
+@SPM3 EQU 4
+ DC A(@SPM1)
+ DC A(@SPM4)
+ DC A(@SPM5)
+ DC A(@SPM4)
+ DC A(@SPM5)
+ ORG ,
+PROGRAM LOCTR ,
+@SPM1 DS 0Y
The next example shows the code generated when VECTOR=DISP is specified. This feature requires both SYSSTATE ARCHLVL=2 and the high-word z/Architecture facility. COMPAT=YES must not be in effect. The displacement table produced in this case requires only 2 bytes per entry. However more instructions are needed to use it. Also it limits the amount of code that can be placed between the first CASE macro and ENDCASE to 32K.
[bookmark: _Toc412717484]Example 36: CASE, integer with VECTOR=DISP
 COPY SPMBEG

 SYSSTATE ARCHLVL=2
rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY Rx,POWER=3,VECTOR=DISP
 CASE 8,24
* code for F1
 CASE 16,32
* code for F2
 ENDCASE
This generates:
 SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2 OSREL=00000000
 rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY Rx,POWER=3,VECTOR=DISP
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ RISBHGZ 0,Rx,2,31,30
+ BASR Rx,0
+ AHHLR 0,0,Rx
+ RISBG Rx,0,32,63,32
+ POP ACONTROL
+ AH Rx,16(,Rx)
+ BR Rx
+@SPM2 DS (@SPM3+1)Y
 CASE 8,24
+@SPM4 DS 0Y
 * code for F1
 CASE 16,32
+ J @SPM1
+@SPM5 DS 0Y
 * code for F2
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 4
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM4-*+16)
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM4-*+16)
+ DC Y(@SPM5-*+16)
+ ORG ,
+@SPM1 DS 0Y
[bookmark: _Toc412717178]Bit-field case set examples
This example of a bit-field case set has two cases. The bit field, WS_CAS1, has a length attribute of 1, so the bit field length is 1 byte (or 8 bits). F1 is to be executed if bits 0 or 3 of the bit field (counting from the left) is on while F1 is to be executed if bits 1, 2, or 4 are on (the value 18 specifies a bit combination of 2 bits). If none of these bits are on in the bit field (even if other bits may be on), control should pass immediately to the instruction following ENDCASE.
[bookmark: _Toc412717485]Example 37: CASE, bit-field with 1-byte case field
 SYSSTATE ARCHLVL=2
rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY (R3G,WS_CAS1),TYPE=BITFIELD
 CASE 1,8
* Code for F1
 CASE 4,18
* Code for F2
 ENDCASE
This example generates the following code. Note that the NILL (and-immediate-low-low) instruction at label @SPM_4 cannot be fully resolved until the ENDCASE macro is reached, since it is only then that we know which bits are to be tested to select the cases in this set and, in particular, which of those bits is the highest-order bit. Thus the ENDCASE macro generates code to ORG back to label @SPM4, complete the NILL instruction and then ORG forward again. The completed NILL instruction, when executed, turns off any bits in the bit field of higher rank than the highest-order bit specified on any CASE macro. This reduces the number of entries needed in the displacement table to the rank of the highest-order bit specified on any CASE macro, instead of requiring one entry for every bit in the bit field. (When the rank of the highest-order bit of any CASE macro is the same as the number of bits in the bit field, the NILL instruction is not needed and is overlaid with a NOP 0 instruction.)
 SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2 OSREL=00000000
 rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY (R3G,WS_CAS1),TYPE=BITFIELD
+ LGB R3G,WS_CAS1
+#@EQE_R3G EQU 0,,,(R3G)
+#@EQE_R2G EQU 0,,,(R2G)
+@SPM4 NILL R3G,0
+ FLOGR R2G,R3G
+ JZ @SPM1
+ LCGR R2G,R2G
+ AGHI R2G,63
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ CLIJH R2G,@SPM3,@SPM1
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ RISBHGZ 0,R2G,0,30,33
+ BASR R2G,0
+ AHHLR 0,0,R2G
+ RISBG R2G,0,32,63,32
+ POP ACONTROL
+ AH R2G,16(,R2G)
+ BR R2G
+ POP ACONTROL
+@SPM2 DS (@SPM3)Y
 CASE 1,8
+@SPM5 DS 0Y
 * Code for F1
 CASE 4,18
+ J @SPM1
+@SPM6 DS 0Y
 * Code for F2
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 5
+ ORG @SPM4
+ NILL R3G,X'1F'
+ ORG ,
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM6-*+16)
+ ORG ,
+@SPM1 DS 0Y
The next example is the same as the previous one except that the case register is an even-numbered register:
[bookmark: _Toc412717486]Example 38: CASE, bit-field with 1-byte bit field, even-numbered case register
 SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2 OSREL=00000000
 rx equ 3,,,,GR32
 ASMMREL ON
 CASENTRY (R2G,WS_CAS1),TYPE=BITFIELD
+ LGB R2G,WS_CAS1
+#@EQE_R2G EQU 0,,,(R2G)
+@SPM4 NILL R2G,0
+ FLOGR R2G,0
+ JZ @SPM1
+ LCGR R2G,R2G
+ AGHI R2G,63
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ CLFI R2G,@SPM3
+ JH @SPM1
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ RISBHGZ 0,R2G,0,30,33
+ BASR R2G,0
+ AHHLR 0,0,R2G
+ RISBG R2G,0,32,63,32
+ POP ACONTROL
+ AH R2G,16(,R2G)
+ BR R2G
+ POP ACONTROL
+@SPM2 DS (@SPM3+1)Y
 CASE 1,8
+@SPM5 DS 0Y
 * Code for F1
 CASE 4,18
+ J @SPM1
+@SPM6 DS 0Y
 * Code for F2
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 5
+ ORG @SPM4
+ NILL R2G,X'1F'
+ ORG ,
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM6-*+16)
+ ORG ,
+@SPM1 DS 0Y
The next example has three cases. The case register is loaded from a 3-byte field, WS_CAS3, containing a 24-bit bit-field. In the following description, the bytes in the bit-field are numbered from 0 to 2 with byte 0 being the first byte. Case 1 is selected if any of the following bits are on in the bit-field: bits 3 and 7 in byte 0, bit 7 in byte 2. Case 2 is selected if any of the following bits are on: bit 5 in byte 1, bits 1 and 6 in byte 2. Case 3 is selected only if bit 2 (the x’20’ bit) is on in byte 1. If none of these bits are set in the bit-field, none of the cases are selected and control passes to the instruction following the ENDCASE macro.
[bookmark: _Toc412717487]Example 39: CASE, bit-field with 3-byte case field
 SYSSTATE ARCHLVL=2
CAS3_0_0 EQU X'80'
CAS3_0_1 EQU X'40'
CAS3_0_2 EQU X'20'
CAS3_0_3 EQU X'10'
CAS3_0_4 EQU X'08'
CAS3_0_5 EQU X'04'
CAS3_0_6 EQU X'02'
CAS3_0_7 EQU X'01'
CAS3_1_0 EQU X'80'
CAS3_1_1 EQU X'40'
CAS3_1_2 EQU X'20'
CAS3_1_3 EQU X'10'
CAS3_1_4 EQU X'08'
CAS3_1_5 EQU X'04'
CAS3_1_6 EQU X'02'
CAS3_1_7 EQU X'01'
CAS3_2_0 EQU X'80'
CAS3_2_1 EQU X'40'
CAS3_2_2 EQU X'20'
CAS3_2_3 EQU X'10'
CAS3_2_4 EQU X'08'
CAS3_2_5 EQU X'04'
CAS3_2_6 EQU X'02'
CAS3_2_7 EQU X'01'

rx equ 3,,,,GR32
 ASMMREL ON,CLOCTR=CONSTANTS
 CASENTRY (R3G,WS_CAS3),TYPE=BITFIELD
 CASE , X
 CAS3_0_3,CAS3_0_7,(CAS3_2_7,2)
 LHI R1,1
 CASE , X
 (CAS3_2_1,2),(CAS3_1_5,1),(CAS3_2_6,2)
 LHI R1,2
 CASE (X'20',1)
 LHI R1,3
 ENDCASE
This example generates the following code.
 SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2 OSREL=00000000
 CAS3_0_0 EQU X'80'
 CAS3_0_1 EQU X'40'
 CAS3_0_2 EQU X'20'
 CAS3_0_3 EQU X'10'
 CAS3_0_4 EQU X'08'
 CAS3_0_5 EQU X'04'
 CAS3_0_6 EQU X'02'
 CAS3_0_7 EQU X'01'
 CAS3_1_0 EQU X'80'
 CAS3_1_1 EQU X'40'
 CAS3_1_2 EQU X'20'
 CAS3_1_3 EQU X'10'
 CAS3_1_4 EQU X'08'
 CAS3_1_5 EQU X'04'
 CAS3_1_6 EQU X'02'
 CAS3_1_7 EQU X'01'
 CAS3_2_0 EQU X'80'
 CAS3_2_1 EQU X'40'
 CAS3_2_2 EQU X'20'
 CAS3_2_3 EQU X'10'
 CAS3_2_4 EQU X'08'
 CAS3_2_5 EQU X'04'
 CAS3_2_6 EQU X'02'
 CAS3_2_7 EQU X'01'
 rx equ 3,,,,GR32
 ASMMREL ON,CLOCTR=CONSTANTS
 CASENTRY (R3G,WS_CAS3),TYPE=BITFIELD
+ LGB R3G,WS_CAS3+2
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ ICM R3G,B'0110',WS_CAS3
+ POP ACONTROL
+#@EQE_R3G EQU 0,,,(R3G)
+#@EQE_R2G EQU 0,,,(R2G)
+@SPM4 NILF R3G,0
+ FLOGR R2G,R3G
+ JZ @SPM1
+ LCGR R2G,R2G
+ AGHI R2G,63
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ CLIJH R2G,@SPM3,@SPM1
+ PUSH ACONTROL
+ ACONTROL NOTYPECHECK
+ RISBHGZ 0,R2G,0,30,33
+ BASR R2G,0
+ AHHLR 0,0,R2G
+ RISBG R2G,0,32,63,32
+ POP ACONTROL
+ AH R2G,16(,R2G)
+ BR R2G
+ POP ACONTROL
+@SPM2 DS (@SPM3)Y
 CASE , X
 CAS3_0_3,CAS3_0_7,(CAS3_2_7,2)
+@SPM5 DS 0Y
+#@EQE_CAS3_0_3 EQU 0,,,(CAS3_0_3)
+#@EQE_CAS3_0_7 EQU 0,,,(CAS3_0_7)
+#@EQE_CAS3_2_7 EQU 0,,,(CAS3_2_7)
 LHI R1,1
 CASE , X
 (CAS3_2_1,2),(CAS3_1_5,1),(CAS3_2_6,2)
+ J @SPM1
+@SPM6 DS 0Y
+#@EQE_CAS3_2_1 EQU 0,,,(CAS3_2_1)
+#@EQE_CAS3_1_5 EQU 0,,,(CAS3_1_5)
+#@EQE_CAS3_2_6 EQU 0,,,(CAS3_2_6)
 LHI R1,2
 CASE (X'20',1)
+ J @SPM1
+@SPM7 DS 0Y
 LHI R1,3
 ENDCASE
+ ORG @SPM2
+@SPM3 EQU 21
+ ORG @SPM4
+ NILF R3G,X'1FFFFF'
+ ORG ,
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM6-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM7-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM5-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM1-*+16)
+ DC Y(@SPM5-*+16)
+ ORG ,
+@SPM1 DS 0Y
[bookmark: _Toc412717179]The SELECT macro set
The SELECT macro set selects the first of a set of functions for execution, whose associated predicate set evaluates TRUE. The flowchart for the SELECT program figure is:
 ┌──────┐ ┌────────┐ True ┌────┐
──────→┤SELECT├────→┤WHEN (1)├──────→┤ F1 ├──→──────────┐
 └──────┘ └───┬────┘ └────┘ │
 │ ↓
 │ False │
 ↓ │
 ┌───┴────┐ True ┌────┐ │
 │WHEN (2)├──────→┤ F2 ├──→──────────┤
 └───┬────┘ └────┘ │
 │ False ↓
 ↓ │
 ┌───┴────┐ True ┌────┐ │
 │WHEN (3)├──────→┤ F3 ├──→──────────┤
 └───┬────┘ └────┘ │
 │ False ↓
 │ │
 . .
 . .
 ↓ .
 ┌───┴────┐ True ┌────┐
 │WHEN (n)├──────→┤ Fn ├──→──────────┤
 └───┬────┘ └────┘ │
 │ False │
 ↓ ↓
 ┌────┴────┐ ┌─────┐ ┌───┴──┐
 │ OTHRWISE├──────→┤Code ├───────→┤ENDSEL├─→
 └─────────┘ └─────┘ └──────┘
OTHRWISE is optional.
The “associated predicate set” of a function is the combination of a single predicate, split between the SELECT macro and each WHEN macro, with any other predicate strings specified on the WHEN macro. Three options are possible.
[bookmark: _Toc412717180]SELECT macro option A
A single predicate is split between the SELECT macro and each WHEN macro. That is, part of the predicate is specified on the SELECT macro and the rest of the predicate, called a “predicate terminator”, is specified on each WHEN macro. When a predicate terminator is concatenated to the predicate portion from the SELECT macro (with an implied comma between the two parts) a complete predicate is formed. This is evaluated and, if TRUE, causes the function code to be selected for execution. (This kind of SELECT is called a “split-predicate SELECT”.)
More than one predicate terminator may be specified on a WHEN macro. When that is done, the corresponding function is selected if any of the predicates, formed by concatenation the SELECT portion of the predicate with each of the predicate terminators on that WHEN macro, evaluate TRUE.
Predicate terminators on WHEN macros must be parenthesized as follows:
if the WHEN specifies just one predicate terminator, no parentheses are required:
 SELECT CLI,A,EQ
 WHEN C’B’
This rule applies even if the single predicate terminator contains more than one term:
 SELECT CLI,A
 WHEN EQ,C’B’
if the WHEN specifies more than one single-term predicate terminator, the complete set of terminators should be enclosed in parentheses
 SELECT CLI,A,EQ
 WHEN (C’B’,C’D’)
if the WHEN specifies more than one multi-term predicate terminator, each multi-term predicate terminator should be enclosed in parentheses and the complete set of predicate terminators should be enclosed in another set of parentheses
 SELECT CLI,A
 WHEN ((EQ,C’B’),(GT,C’D’))
The split predicate may be any predicate valid for an IF macro other than one consisting only of a condition or the syntax CC=n. The predicate may be split at any point after the instruction op code and before the last value. However, with one exception, the sequence of values within the predicate cannot be changed. The exception applies to comparison predicates (any predicate that starts with a Compare instruction). When a comparison predicate is split between a SELECT macro and a WHEN macro, the SELECT portion may contain all elements of the predicate except the condition, with the predicate terminator on the WHEN macro consisting of just the condition. Thus, in this case, the condition will appear in the completed predicate as the last element of the predicate, instead of in its usual position as the penultimate element. For this reason, comparison predicates that are split between the SELECT and WHEN macros must specify a mnemonic condition, and not a numeric condition mask. (Without this rule, it would be impossible for the macro to distinguish between a decimal number that specifies immediate data or a register from one that specifies a condition mask, since the position of the condition in the predicate can vary.)
This example shows a split-predicate SELECT, with a comparison predicate split after the condition.
[bookmark: _Toc412717488]Example 40: SELECT option A
 SELECT CLI,0(R6),EQ Defines the comparison
 WHEN (X’20’)
 Code for F1
 WHEN (1,5,13)
 Code for F2
 WHEN (3,7,15)
 Code for F3
 OTHRWISE
 Code for F4
 ENDSEL
It produces:
 SELECT CLI,0(R6),EQ Defines the comparison
 WHEN (X'20')
+ CLI 0(R6),X'20' (0 0 0 0 0) 0 1
+ BNE @SPM2 ¬-> F (0 0 0 0 0) 0 1
 * Code for F1
 WHEN (1,5,13)
+ B @SPM1
+@SPM2 CLI 0(R6),1 (0 0 0 0 0) 0 1
+ BE @SPM3 --> T (0 0 0 0 0) 0 1
+ CLI 0(R6),5 (0 0 0 0 0) 0 2
+ BE @SPM3 --> T (0 0 0 0 0) 0 2
+ CLI 0(R6),13 (0 0 0 0 0) 0 3
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 3
+@SPM3 DS 0Y
 * Code for F2
 WHEN (3,7,15)
+ B @SPM1
+@SPM4 CLI 0(R6),3 (0 0 0 0 0) 0 1
+ BE @SPM5 --> T (0 0 0 0 0) 0 1
+ CLI 0(R6),7 (0 0 0 0 0) 0 2
+ BE @SPM5 --> T (0 0 0 0 0) 0 2
+ CLI 0(R6),15 (0 0 0 0 0) 0 3
+ BNE @SPM6 ¬-> F (0 0 0 0 0) 0 3
+@SPM5 DS 0Y
 * Code for F3
 OTHRWISE
+ B @SPM1
+@SPM6 DS 0Y
 * Code for F4
 ENDSEL
+@SPM1 DS 0Y
In this example (which does not include an OTHRWISE macro) the predicate is split before the condition:
[bookmark: _Toc412717489]Example 41: SELECT option A, predicate split before condition
 SELECT CLM,2,B'1100' Defines the comparison
 WHEN ((EQ,=C'AA'),(GT,=C'BB'))
* Process A
 WHEN EQ,=C'AB'
* Process B
 WHEN NE,=C'12'
* Process C
 ENDSEL
It produces:
 SELECT CLM,2,B'1100' Defines the comparison
 WHEN ((EQ,=C'AA'),(GT,=C'BB'))
+ CLM 2,B'1100',=C'AA' (0 0 0 0 0) 0 1
+ BE @SPM2 --> T (0 0 0 0 0) 0 1
+ CLM 2,B'1100',=C'BB' (0 0 0 0 0) 0 2
+ BNH @SPM3 ¬-> F (0 0 0 0 0) 0 2
+@SPM2 DS 0Y
 * Process A
 WHEN EQ,=C'AB'
+ B @SPM1
+@SPM3 CLM 2,B'1100',=C'AB' (0 0 0 0 0) 0 1
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 1
 * Process B
 WHEN NE,=C'12'
+ B @SPM1
+@SPM4 CLM 2,B'1100',=C'12' (0 0 0 0 0) 0 1
+ BE @SPM5 ¬-> F (0 0 0 0 0) 0 1
 * Process C
 ENDSEL
+@SPM5 DS 0Y
+@SPM1 DS 0Y
Here, the split predicate specifies a test-under-mask instruction:
[bookmark: _Toc412717490]Example 42: SELECT option A, test-under-mask predicate
 SELECT TMLL,R2G Test-under-mask split predicate
 WHEN ((3,o),(48,m))
* Process A (selected if bits 62-63 are ones
* or bits 58-59 = b'01')
 WHEN 12,p
* Process B (selected if bits 60-61 = b'10')
 WHEN x'E000',z
* Process C (selected if bits 48-49 are zeroes)
 ENDSEL
The following code is generated:
 SELECT TMLL,R2G Test-under-mask split predicate
 WHEN ((3,o),(48,m))
+ TMLL R2G,3 (0 0 0 0 0) 0 1
+ BO @SPM2 --> T (0 0 0 0 0) 0 1
+ TMLL R2G,48 (0 0 0 0 0) 0 2
+ BNM @SPM3 ¬-> F (0 0 0 0 0) 0 2
+@SPM2 DS 0Y
 * Process A (selected if bits 63-63 are ones
 * or bits 58-59 = b'01')
 WHEN 12,p
+ B @SPM1
+@SPM3 TMLL R2G,12 (0 0 0 0 0) 0 1
+ BNP @SPM4 ¬-> F (0 0 0 0 0) 0 1
 * Process B (selected if bits 60-61 = b'10')
 WHEN x'E000',z
+ B @SPM1
+@SPM4 TMLL R2G,x'E000' (0 0 0 0 0) 0 1
+ BNZ @SPM5 ¬-> F (0 0 0 0 0) 0 1
 * Process C (selected if bits 48-49 are zeroes)
 ENDSEL
[bookmark: _Toc412717181]SELECT macro option B
No predicate part is specified on the SELECT macro and no predicate terminators are specified on the WHEN macros. Instead, one or more complete predicate strings are specified on each WHEN macro and the function corresponding to the first WHEN any of whose predicate strings evaluate TRUE is selected for execution. (This option is equivalent to an IF/ELSEIF/ELSEIF/…/ELSE/ENDIF structure.)
For example:
[bookmark: _Toc412717491]Example 43: SELECT option B
 SELECT
 WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)
 <code for first condition>
 WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)
 <code for second condition>
 OTHRWISE
 <otherwise code>
 ENDSEL
produces (assuming that ASMMREL ON has been coded earlier):
 SELECT
 WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)
+ CLI WORD1,1 (0 0 0 0 0) 0 1
+ BE @SPM2 --> T (0 0 0 0 0) 0 1
+ CLI WORD1,2 (0 0 0 0 0) 0 2
+ BE @SPM2 --> T (0 0 0 0 0) 0 2
+ CLI WORD1,3 (0 0 0 0 0) 0 3
+ BNE @SPM3 ¬-> F (0 0 0 0 0) 0 3
+@SPM2 DS 0Y
 * <code for first condition>
 WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)
+ B @SPM1
+@SPM3 CLI WORD2,2 (0 0 0 0 0) 0 1
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 1
+ CLI WORD3,3 (0 0 0 0 0) 0 2
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 2
 * <code for second condition>
 OTHRWISE
+ B @SPM1
+@SPM4 DS 0Y
 * <otherwise code>
 ENDSEL
+@SPM1 DS 0Y
[bookmark: _Toc412717182]SELECT macro option C
This option is a combination of options A and B. A single predicate is split between the SELECT macro and each WHEN macro and the WHEN macros may, in addition, specify complete predicate strings, preceded by a connector. Complete predicate strings with their connectors are combined either with a specific predicate terminator, or with all predicate terminators ORed together, to determine whether that WHEN is selected. For WHEN macros specifying more than one predicate terminator, parentheses are used to specify how complete predicate strings and predicate terminators are to be combined, as follows.
When a complete predicate string and its connector appear within the same set of parentheses, if any, as those enclosing an individual predicate terminator, the predicate string is combined only with that predicate terminator:
 select CLI,A,eq
 when ((C’B’,and,CLI,X,eq,C’1’),C’C’,and,CLI,X,eq,C’2’)
evaluates TRUE if (A = ‘B’ and X = ‘1’) or (A = ‘C’ and X = ‘2’)
(The additional parentheses enclosing “C’B’,and,CLI,X,eq,C’1’” are needed to prevent the next term, “C’C’”, from being considered part of the predicate “CLI,X,eq,C’1’”. No additional parentheses, on the other hand, are needed around “C’C’,and,CLI,X,eq,C’2’” since the end of the predicate is unambiguously signaled by the existing right parenthesis. Although a second set of parentheses are not needed, they can be added, if desired, with no effect on the generated code, to make the logical expression look consistent.)
When a complete predicate string and its connector appear outside the parentheses, if any, enclosing all the predicate terminators on the WHEN macro, the predicate string is combined with all predicate terminators ORed together:
 select CLI,A,eq
 when (C’B’,C’C’),and,(CLI,X,eq,C’1’,or,CLI,X,eq,C’2’)
evaluates TRUE if (A = ‘B’ or ‘C’) and (X = ‘1’ or ‘2’)
This example shows the two cases mentioned above. It also illustrates how predicate strings on a structured programming macro, such as WHEN, can be aligned vertically on continued lines, by inserting a string of commas between the continue column and the beginning of the next predicate. This aids greatly in making complex logical expressions more readable and in spotting typing errors. Commas may be inserted immediately before any Boolean connector and before the first predicate in a predicate string, but not within a predicate. In addition, Boolean connectors may be preceded by one or more periods. All such commas and periods are skipped by the predicate parser and have no effect on the generated code.
[bookmark: _Toc412717492]Example 44: SELECT option C
 select CLI,A,eq
 when ((C'B',and,CLI,X,eq,C'1'), X
 ,,,C'C',and,CLI,X,eq,C'2')
* Function 1 (selected if (A = 'B' and X = '1') or
* (A = 'C' and X = '2'))
 when (C'B',C'C'),and,(CLI,X,eq,C'1',or,CLI,X,eq,C'2')
* Function 2 (selected if (A = 'B' or 'C') and
* (X = '1' or '2'))
 endsel
It generates:
 select CLI,A,eq
 when ((C'B',and,CLI,X,eq,C'1'), X
 ,,,C'C',and,CLI,X,eq,C'2')
+ CLI A,C'B' (0 0 0 0 0) 0 1
+ BNE @SPM2 ¬-> 3 (0 0 0 0 0) 0 1
+ CLI X,C'1' (0 0 0 0 0) 0 2
+ BE @SPM3 --> T (0 0 0 0 0) 0 2
+@SPM2 CLI A,C'C' (0 0 0 0 0) 0 3
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 3
+ CLI X,C'2' (0 0 0 0 0) 0 4
+ BNE @SPM4 ¬-> F (0 0 0 0 0) 0 4
+@SPM3 DS 0Y
 * Function 1 (selected if (A = 'B' and X = '1') or
 * (A = 'C' and X = '2'))
 when (C'B',C'C'),and,(CLI,X,eq,C'1',or,CLI,X,eq,C'2')
+ B @SPM1
+@SPM4 CLI A,C'B' (0 0 0 0 0) 0 1
+ BE @SPM5 --> 3 (0 0 0 0 0) 0 1
+ CLI A,C'C' (0 0 0 0 0) 0 2
+ BNE @SPM6 ¬-> F (0 0 0 0 0) 0 2
+@SPM5 CLI X,C'1' (0 0 0 0 0) 0 3
+ BE @SPM7 --> T (0 0 0 0 0) 0 3
+ CLI X,C'2' (0 0 0 0 0) 0 4
+ BNE @SPM6 ¬-> F (0 0 0 0 0) 0 4
+@SPM7 DS 0Y
 * Function 2 (selected if (A = 'B' or 'C') and
 * (X = '1' or '2'))
 endsel
+@SPM6 DS 0Y
+@SPM1 DS 0Y
[bookmark: _Ref412654409][bookmark: _Toc412717183]Additional facilities
Programs coded using the structured programming macros described above can take advantage of the following additional facilities, which are included in the macro logic. These facilities are optional and disabled by default. They can be enabled with the ASMMTROP macro (see The ASMMTROP macro on page 13).
[bookmark: _Toc412717184]Compare-and-branch facility
The full name of this feature is the machine instruction op code translation facility for compare-and-branch logic.
When enabled, the compare-and-branch facility replaces certain CR, CGR, CLR, CLGR, CHI, LTR and LTGR instructions, when specified in a predicate on a structured programming macro, together with the following branch on condition instruction that would normally be generated, with a single compare and branch instruction that performs the same logical function (except for setting the condition code). Depending on the target processor, this may result in improved performance, compared with executing separate compare and branch instructions.
Because the compare-and-branch instructions do not set the condition code, care should be exercised when coding logic that depends on the condition code set by a previous predicate (whether earlier in the predicate string on the same structure programming macro or in a predicate string on a previous structured programming macro). If needed, the substitution of a non-condition-code-setting compare-and-branch instruction for a compare or load-and-test instruction that does set the condition code can be suppressed for a given macro, or even a given predicate on a macro, by specifying CC=YES on the macro (or CC=(,,…,YES), where the position of the YES in the sublist corresponds with the predicate number in the predicate string). It is also possible to specify that all predicates, or a given predicate, must not change the condition code. This is done by specifying CC=NO (or CC=(,,…,NO)) on the macro with the predicate. Then, then the macro logic will issue a level-12 MNOTE if the predicate cannot be generated with a non-condition-code-setting instruction.
Here is an example of an IF statement generation with the compare-and-branch facility disabled:
[bookmark: _Toc412717493]Example 45: Compare-and-branch facility, facility disabled
* IF showing effect of enabling compare-and-branch facility

* - version with compare-and-branch facility disabled

* ASMMTROP on,fac=CB
 if (CHI,R4,h,23,and, X
 (LTR,R2,R2,nz,or,CHI,R4,lt,512),or, X
 ,ICM,R1,M3,D2(B2),4) THEN
* Code for F1
 else
* Code for F2
 endif
This generates:
 * IF showing effect of enabling compare-and-branch facility

 * - version with compare-and-branch facility disabled

 * ASMMTROP on,fac=CB
 if (CHI,R4,h,23,and, X
 (LTR,R2,R2,nz,or,CHI,R4,lt,512),or, X
 ,ICM,R1,M3,D2(B2),4) THEN
+ CHI R4,23 (0 0 0 0 0) 0 1
+ BNH @SPM1 ¬-> 4 (0 0 0 0 0) 0 1
+ LTR R2,R2 (0 0 0 0 0) 0 2
+ BNZ @SPM2 --> T (0 0 0 0 0) 0 2
+ CHI R4,512 (0 0 0 0 0) 0 3
+ BL @SPM2 --> T (0 0 0 0 0) 0 3
+@SPM1 ICM R1,M3,D2(B2) (0 0 0 0 0) 0 4
+ BC 11,@SPM3 ¬-> F (0 0 0 0 0) 0 4
+@SPM2 DS 0Y
 * Code for F1
 else
+ B @SPM4
+@SPM3 DS 0Y
 * Code for F2
 endif
+@SPM4 DS 0Y
and here is the same example, with the compare-and-branch facility enabled:
[bookmark: _Toc412717494]Example 46: Compare-and-branch facility, facility enabled
* IF showing effect of enabling compare-and-branch facility

* - version with compare-and-branch facility enabled

 ASMMTROP on,fac=CB
 if (CHI,R4,h,23,and, X
 (LTR,R2,R2,nz,or,CHI,R4,lt,512),or, X
 ,ICM,R1,M3,D2(B2),4) THEN
* Code for F1
 else
* Code for F2
 endif
This generates:
 * IF showing effect of enabling compare-and-branch facility

 * - version with compare-and-branch facility enabled

 ASMMTROP on,fac=CB
 if (CHI,R4,h,23,and, X
 (LTR,R2,R2,nz,or,CHI,R4,lt,512),or, X
 ,ICM,R1,M3,D2(B2),4) THEN
+ CLIBNH R4,23,@SPM1 ¬-> 4 (0 0 0 0 0) 0 1
+ LTR R2,R2 (0 0 0 0 0) 0 2
+ BNZ @SPM2 --> T (0 0 0 0 0) 0 2
+ CHI R4,512 (0 0 0 0 0) 0 3
+ BL @SPM2 --> T (0 0 0 0 0) 0 3
+@SPM1 ICM R1,M3,D2(B2) (0 0 0 0 0) 0 4
+ BC 11,@SPM3 ¬-> F (0 0 0 0 0) 0 4
+@SPM2 DS 0Y
 * Code for F1
 else
+ B @SPM4
+@SPM3 DS 0Y
 * Code for F2
 endif
+@SPM4 DS 0Y
The same example, with relative addressing in effect:
[bookmark: _Toc412717495]Example 47: Compare-and-branch facility, facility enabled with relative addressing
 * IF showing effect of enabling compare-and-branch facility

 * - version with compare-and-branch facility enabled and
 * relative addressing in effect

 ASMMREL ON
 ASMMTROP on,fac=CB
 if (CHI,R4,h,23,and, X
 (LTR,R2,R2,nz,or,CHI,R4,lt,512),or, X
 ,ICM,R1,M3,D2(B2),4) THEN
+ CLIJNH R4,23,@SPM1 ¬-> 4 (0 0 0 0 0) 0 1
+ LTR R2,R2 (0 0 0 0 0) 0 2
+ JNZ @SPM2 --> T (0 0 0 0 0) 0 2
+ CHI R4,512 (0 0 0 0 0) 0 3
+ JL @SPM2 --> T (0 0 0 0 0) 0 3
+@SPM1 ICM R1,M3,D2(B2) (0 0 0 0 0) 0 4
+ BRC 11,@SPM3 ¬-> F (0 0 0 0 0) 0 4
+@SPM2 DS 0Y
 * Code for F1
 else
+ J @SPM4
+@SPM3 DS 0Y
 * Code for F2
 endif
+@SPM4 DS 0Y
[bookmark: _Toc412717185]Dependent logic facility
The full name of this feature is the machine instruction op code translation facility for dependent logic.
When enabled, the dependent logic facility replaces unconditional load, store and branch instructions in an eligible dependent logic block (a block of program logic that is dependent on the truth value of a predicate string specified in a structured programming macro) with equivalent conditional load, store and branch instructions and removes the preceding branch instruction, thus potentially improving the performance of that section of logic.
Note: This facility complements the compare-and-branch facility, described above. If both facilities are active, the dependent logic facility takes precedence. That is, if any code is changed by the dependent logic facility, no further changes are made by the compare-and-branch logic facility. (Code changes made by the two facilities cannot be combined in the same logic block since the compare and branch instructions generated by one facility do not set the condition code on which the conditional instructions generated by the other facility depend.)
Here is an example of an IF statement generation, containing load instructions in the dependent logic blocks, with the dependent logic facility disabled:
[bookmark: _Toc412717496]Example 48: Dependent logic facility, facility disabled
* IF showing effect of enabling dependent logic facility

* - version with compare-and-branch facility enabled and
* dependent logic facility disabled

 ASMMREL ON
 ASMMTROP on,fac=CB
 if CHI,R4,h,23
 L R1,WORD1
 else
 L R1,WORD2
 endif
This generates:
* IF showing effect of enabling dependent logic facility

 * - version with compare-and-branch facility enabled and
 * dependent logic facility disabled

 ASMMREL ON
 ASMMTROP on,fac=CB
 if CHI,R4,h,23
+ CLIJNH R4,23,@SPM1 ¬-> F (0 0 0 0 0) 0 1
 L R1,WORD1
 else
+ J @SPM2
+@SPM1 DS 0Y
 L R1,WORD2
 endif
+@SPM2 DS 0Y
When the dependent logic facility is enabled, this generates:
[bookmark: _Toc412717497]Example 49: Dependent logic facility, facility enabled
 * IF showing effect of enabling dependent logic facility

 * - version with compare-and-branch facility enabled and
 * dependent logic facility enabled

 ASMMREL ON
 ASMMTROP on
 if CHI,R4,h,23
+ CHI R4,23 (0 0 0 0 0) 0 1
> LOCH R1,WORD1
> else
+@SPM1 DS 0Y
> LOCNH R1,WORD2
> endif
Note the following in the above example:
No branch-on-condition instruction has been generated after the CHI instruction
The load instructions in the blocks following both IF and ELSE have been replaced with load-on-condition instructions, with the appropriate condition mnemonic extensions
Although both the compare-and-branch facility and the dependent logic facility are enabled (ASMMTROP ON coded, with no FAC keyword), the dependent logic facility takes precedence, as mentioned above, and no further changes are made by the compare-and-branch facility. (As shown by the same example with just the compare-and-branch facility, when that facility is enabled alone, it does change the generated code in this example)
The dependent logic facility uses assembler AREAD statements to scan forward from an IF or ELSE macro into the code within the dependent logic block, until the end of the block, to determine if that block is eligible for instruction substitutions. If it is, the facility modifies the instructions in storage and then inserts them back into the assembler input queue for processing by the assembler, using assembler AINSERT statements. If the block is not eligible (for example, because it contains instructions other than load, store and conditional branch, or it contains too many load and store instructions to generate any performance benefit – for the limit used by default and how it can be overridden, see The ASMMTROP macro on page 13), the instructions are inserted back into the assembler queue unchanged, again using AINSERT statements. The insertion of statements (whether changed or not) via AINSERT statements is indicated in the assembler listing by the character ‘>’ before the assembler statement.
[bookmark: _Toc412717186]Facility statistics
When either, or both, of the optional facilities described above is enabled, a report showing statistics of the effect of enabling the facilities can be generated in the program listing by coding the following macro near the end of the program.
 ASMMTROP STATS
Here is an example of the output produced. (The numbers in the Statements Changed column are the statement numbers of statements changed by the dependent logic facility.)
 ASMMTROP STATS
+
+ASMMTROP: Compare-and-Branch Machine instruction op code translation stX
+ atistics
+
+ Replacement
+Instruction Replaced Suppressed Total
+ by CC=YES
+
+ CR 1 0 1
+ CHI 57 0 66
+
+ Totals: 58 0 67
+
+
+ASMMTROP: Dependent Logic Changed Code Block Statistics
+
+ Examined
+SP Macro Changed But Not Statements Total
+ Changed Changed
+
+ IF 5 42 9118 47
+ 12793
+ 13352
+ 13764
+ 20165
+
+ UNLESS 0 2 2
+ ELSE 1 1 13399 2
+
+ WHEN 2 52 12952 54
+ 13040
+
+ OTHRWISE 0 1 1
+
+ Totals: 8 98 106
+
+ASMMTROP: Dependent Logic Changed Instruction Statistics
+
+ Examined
+Instruction Changed But Not Total
+ Changed
+
+ LR 1 1 2
+ L 4 6 10
+ J 3 2 5
+
+ Totals: 8 9 17
+
18	High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide
Chapter 2: Using structured programming macros 	19

